# Weighted Automata with Ambiguity and Extensions

<u>Ritam Raha</u> <sup>1</sup> Nathanaël Fijalkow <sup>2</sup> Filip Mazowiecki <sup>2</sup> Vincent Penelle <sup>2</sup> Nathan Lhote <sup>2</sup>

<sup>1</sup>Chennai Mathematical Institute

<sup>2</sup>LaBRI, Bordeaux

Formal Methods and Verification Seminar - ULB December 4, 2018



CHENNAI MATHEMATICAL INSTITUTE

Ritam Raha

Weighted Automata with ambiguity and extensions

**ABRI** 

# Outline

- 1) Weighted Automata
- 2 Hankel Matrix
- 3 Ambiguity
- 4 Universality with Ambiguity
- 5 Introduction to Weighted Context-Free Grammar
- 6 Learning WCFG
  - Properties of WCFG

# Outline

- 2 Hankel Matrix
- 3 Ambiguity
- Universality with Ambiguity
- 5 Introduction to Weighted Context-Free Grammar
- 6 Learning WCFG
  - 7 Properties of WCFG

#### Automata



#### Automata



#### Automata





#### Automata





#### Automata





Semiring  $S(\oplus, \odot, 0, 1)$ 

 $\frac{\text{Semiring}}{S(\oplus,\odot,0,1)}$ 

Examples:

- Natural Semiring :  $\mathbb{N}(+,\cdot,0,1)$
- Tropical Semiring:

 $\mathbb{N}_{\infty}(\min,+,\infty,0)$  Min-plus Semiring or  $\mathbb{N}_{-\infty}(\max,+,-\infty,0)$  Max-plus Semiring







Max-plus Semiring

Consider the word *bbab*:



Consider the word *bbab*:



Consider the word *bbab*:

b b a b b b a b b b a b b a b 
$$1+1+0+0=2$$
  $0+1+0+0=1$   $0+0+0+1=1$ 

Output:  $max{2, 1, 1} = 2$ 



Consider the word *bbab*:

Output:  $\max\{2, 1, 1\} = 2$ In general:  $\odot$  transitions,  $\oplus$  runs



Consider the word *bbab*:

b b a b b b a b b b a b b a b 
$$1+1+0+0=2$$
  $0+1+0+0=1$   $0+0+0+1=1$ 

Output:  $\max\{2, 1, 1\} = 2$ In general:  $\odot$  transitions,  $\oplus$  runs

Counting the length of the longest *b*-block

Ritam Raha

# Outline

#### Weighted Automata

#### 2 Hankel Matrix

- 3 Ambiguity
- 4 Universality with Ambiguity
- 5 Introduction to Weighted Context-Free Grammar
- 6 Learning WCFG
  - 7 Properties of WCFG

Alternatively, we can see a weighted automata  $\mathcal{A}$  on a Semiring S like the following:

Alternatively, we can see a weighted automata  $\mathcal{A}$  on a Semiring S like the following:

 $\mathcal{A} = \langle \mathcal{Q}, \alpha \in \mathcal{S}^{\mathcal{Q}}, (\Delta(a) \in \mathcal{S}^{\mathcal{Q} \times \mathcal{Q}})_{a \in \Sigma}, \eta \in \mathcal{S}^{\mathcal{Q}} \rangle$ 

Alternatively, we can see a weighted automata  $\mathcal{A}$  on a Semiring S like the following:

$$\mathcal{A} = \langle Q, \alpha \in S^Q, (\Delta(a) \in S^{Q \times Q})_{a \in \Sigma}, \eta \in S^Q \rangle$$
  

$$\mathcal{A} \text{ recognizes a function } f : \Sigma^* \to S, \text{ where}$$
  

$$f(a_1 \dots a_n) = \alpha \underbrace{\Delta(a_1) \dots \Delta(a_n)}_{\Delta(a_1 \dots a_n)} \cdot \eta$$

Alternatively, we can see a weighted automata  $\mathcal{A}$  on a Semiring S like the following:

$$\mathcal{A} = \langle Q, \alpha \in S^Q, (\Delta(a) \in S^{Q \times Q})_{a \in \Sigma}, \eta \in S^Q \rangle$$
  

$$\mathcal{A} \text{ recognizes a function } f : \Sigma^* \to S, \text{ where}$$
  

$$f(a_1 \dots a_n) = \alpha . \underbrace{\Delta(a_1) \dots \Delta(a_n)}_{\Delta(a_1 \dots a_n)} . \eta$$

Now, consider a bi-infinite matrix  $H_f \in S^{\Sigma^* \times \Sigma^*}$ , such that  $H_f(u, v) = f(uv)$ .

Alternatively, we can see a weighted automata A on a Semiring S like the following:

$$\mathcal{A} = \langle Q, \alpha \in S^Q, (\Delta(a) \in S^{Q \times Q})_{a \in \Sigma}, \eta \in S^Q \rangle$$
  

$$\mathcal{A} \text{ recognizes a function } f : \Sigma^* \to S, \text{ where}$$
  

$$f(a_1 \dots a_n) = \alpha \underbrace{\Delta(a_1) \dots \Delta(a_n)}_{\Delta(a_1 \dots a_n)} \cdot \eta$$

Now, consider a bi-infinite matrix  $H_f \in S^{\Sigma^* \times \Sigma^*}$ , such that  $H_f(u, v) = f(uv)$ .



Alternatively, we can see a weighted automata A on a Semiring S like the following:

$$\mathcal{A} = \langle Q, \alpha \in S^Q, (\Delta(a) \in S^{Q \times Q})_{a \in \Sigma}, \eta \in S^Q \rangle$$
  

$$\mathcal{A} \text{ recognizes a function } f : \Sigma^* \to S, \text{ where}$$
  

$$f(a_1 \dots a_n) = \alpha \underbrace{\Delta(a_1) \dots \Delta(a_n)}_{\Delta(a_1 \dots a_n)} \cdot \eta$$

Now, consider a bi-infinite matrix  $H_f \in S^{\Sigma^* \times \Sigma^*}$ , such that  $H_f(u, v) = f(uv)$ .



#### This is called **Hankel Matrix**.

Ritam Raha

#### Theorem: (Fliess '74) [Fijb]

- Any automaton recognizing f has at least rank $(H_f)$  many states,
- There exists an automaton recognizing f with rank $(H_f)$  many states.

#### Theorem: (Fliess '74) [Fijb]

- Any automaton recognizing f has at least rank $(H_f)$  many states,
- There exists an automaton recognizing f with rank $(H_f)$  many states.

#### Application:

• Given a rational function *f*, we can effectively construct the minimal weighted automaton recognizing *f*.

#### Theorem: (Fliess '74) [Fijb]

- Any automaton recognizing f has at least rank(H<sub>f</sub>) many states,
- There exists an automaton recognizing f with rank $(H_f)$  many states.

#### Application:

- Given a rational function *f*, we can effectively construct the minimal weighted automaton recognizing *f*.
- Weighted automata over the reals can be learned efficiently in Angluin's supervised scenario. [Fija]

#### Theorem: (Fliess '74) [Fijb]

- Any automaton recognizing f has at least rank(H<sub>f</sub>) many states,
- There exists an automaton recognizing f with rank $(H_f)$  many states.

#### Application:

- Given a rational function *f*, we can effectively construct the minimal weighted automaton recognizing *f*.
- Weighted automata over the reals can be learned efficiently in Angluin's supervised scenario. [Fija]
- Some more applications will follow...

# Outline

#### 1 Weighted Automata

2 Hankel Matrix

#### 3 Ambiguity

- 4 Universality with Ambiguity
- 5 Introduction to Weighted Context-Free Grammar
- 6 Learning WCFG
- 7 Properties of WCFG



Counts the number of accepting runs of a word!

#### Counts the number of accepting runs of a word! If all words have maximum one accepting run - Unambiguous



# Counts the number of accepting runs of a word!

If all words have finitely many accepting run - Finite ambiguous



#### Counts the number of accepting runs of a word!

If the maximum degree of ambiguity is bounded by some polynomial in the length of the word - Polynomially ambiguous



#### Counts the number of accepting runs of a word! If the degree of ambiguity is not bounded- Exponentially ambiguous



#### Counts the number of accepting runs of a word!

If the degree of ambiguity is not bounded- Exponentially ambiguous



It can be shown that these are the only options for ambiguity of an automata.
# Outline

#### Weighted Automata

- 2 Hankel Matrix
- 3 Ambiguity
- Universality with Ambiguity
  - 5 Introduction to Weighted Context-Free Grammar
- 6 Learning WCFG
- 7 Properties of WCFG

Given an automaton M on alphabet  $\Sigma$ , is  $L(M) = \Sigma^*$ ?

Given an automaton M on alphabet  $\Sigma$ , is  $L(M) = \Sigma^*$ ?

Universality problem for any general NFA is PSPACE-complete.

Given an automaton M on alphabet  $\Sigma$ , is  $L(M) = \Sigma^*$ ?

Universality problem for any general NFA is PSPACE-complete.

What happens with ambiguity?

#### Lemma:

If there exists a word w that is not accepted by an unambiguous NFA M, then there exists a word w' such that  $|w'| \le |M|$  and w' is not accepted by M.

#### Lemma:

If there exists a word w that is not accepted by an unambiguous NFA M, then there exists a word w' such that  $|w'| \le |M|$  and w' is not accepted by M.

Proof Idea:

#### Lemma:

If there exists a word w that is not accepted by an unambiguous NFA M, then there exists a word w' such that  $|w'| \le |M|$  and w' is not accepted by M.

#### Lemma:

If there exists a word w that is not accepted by an unambiguous NFA M, then there exists a word w' such that  $|w'| \le |M|$  and w' is not accepted by M.

$$H = \left( \begin{array}{c} \\ \\ \\ \end{array} \right)$$

#### Lemma:

If there exists a word w that is not accepted by an unambiguous NFA M, then there exists a word w' such that  $|w'| \le |M|$  and w' is not accepted by M.

$$H = \begin{pmatrix} u & \ddots & \ddots & \epsilon \\ & & & \\ & & & \end{pmatrix}$$

#### Lemma:

If there exists a word w that is not accepted by an unambiguous NFA M, then there exists a word w' such that  $|w'| \le |M|$  and w' is not accepted by M.

$$H = \begin{array}{c} u & \dots & \epsilon \\ \epsilon \\ x_1 \\ \vdots \\ u \end{array} \begin{pmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

#### Lemma:

If there exists a word w that is not accepted by an unambiguous NFA M, then there exists a word w' such that  $|w'| \le |M|$  and w' is not accepted by M.

$$H = \begin{array}{cccc} u & \ddots & \ddots & \epsilon \\ & \epsilon \\ X_1 \\ H = \begin{array}{c} x_1 x_2 \\ \vdots \\ u \end{array} \begin{pmatrix} 0 & & & \\ & 0 & & \\ & & 0 & \\ & & & 0 \end{pmatrix}$$

#### Lemma:

If there exists a word w that is not accepted by an unambiguous NFA M, then there exists a word w' such that  $|w'| \le |M|$  and w' is not accepted by M.

$$H = \begin{array}{cccc} & u & \ddots & \ddots & \epsilon \\ & & & \\ \kappa_1 \\ H = & x_1 x_2 \\ & \vdots \\ & & u \end{array} \begin{pmatrix} 0 & & & & \\ & 0 & & 1 \\ & & 0 & & \\ & & & 0 \\ & & & & 0 \end{pmatrix}$$

#### Lemma:

If there exists a word w that is not accepted by an unambiguous NFA M, then there exists a word w' such that  $|w'| \le |M|$  and w' is not accepted by M.

*Proof Idea*: Let the shortest word be  $u = x_1 x_2 \dots x_n$ , where n > |M|.

$$H = \begin{array}{cccc} & u & \ddots & \ddots & \epsilon \\ & \epsilon \\ & x_1 \\ H = \begin{array}{cccc} x_1 x_2 \\ \vdots \\ & u \end{array} \begin{pmatrix} 0 & & & & \\ & 0 & & & \\ & & 0 & & \\ & & & 0 \end{pmatrix}$$

 $\operatorname{rank}(H) > n > |M|$ 

Consider *M* weighted automata on  $\{\mathbb{R} \cap \{0,1\},+,\times,0,1\}$  with all transition weight 1.

Consider *M* weighted automata on  $\{\mathbb{R} \cap \{0,1\},+,\times,0,1\}$  with all transition weight 1.

*M* computes  $f : \Sigma^* \to \{0, 1\}$ .

Consider *M* weighted automata on  $\{\mathbb{R} \cap \{0,1\},+,\times,0,1\}$  with all transition weight 1.

*M* computes  $f : \Sigma^* \to \{0, 1\}$ .

M unambiguous

Consider *M* weighted automata on  $\{\mathbb{R} \cap \{0,1\},+,\times,0,1\}$  with all transition weight 1.

*M* computes  $f : \Sigma^* \to \{0, 1\}$ .

*M* unambiguous  $\Rightarrow$  *H*  $\subset$  *H*<sub>*f*</sub>

Consider *M* weighted automata on  $\{\mathbb{R} \cap \{0,1\},+,\times,0,1\}$  with all transition weight 1.

*M* computes  $f : \Sigma^* \to \{0, 1\}$ .

M unambiguous  $\Rightarrow H \subset H_f \Rightarrow rank(H) < |M|$ . Contradiction!

Consider *M* weighted automata on  $\{\mathbb{R} \cap \{0,1\},+,\times,0,1\}$  with all transition weight 1.

*M* computes  $f : \Sigma^* \to \{0, 1\}$ .

M unambiguous  $\Rightarrow H \subset H_f \Rightarrow rank(H) < |M|$ . Contradiction!

Clearly in co-NP.

Consider *M* weighted automata on  $\{\mathbb{R} \cap \{0,1\},+,\times,0,1\}$  with all transition weight 1.

*M* computes  $f : \Sigma^* \to \{0, 1\}$ .

M unambiguous  $\Rightarrow H \subset H_f \Rightarrow rank(H) < |M|$ . Contradiction!

Clearly in co-NP. Can we do better?

**Linear Recurrence System:** Each term of a sequence is a linear function of earlier terms in the sequence.

$$\left\{ \begin{array}{l} f(n) = f(n-1) + g(n-1) \\ g(n) = f(n-1) \\ f(0) = 0 \\ g(0) = 1 \end{array} \right\} \Leftrightarrow \left\{ \begin{array}{l} f(n) = f(n-1) + f(n-2) \\ f(0) = 0 \\ f(1) = 1 \end{array} \right\}$$

**Linear Recurrence System:** Each term of a sequence is a linear function of earlier terms in the sequence.

$$\begin{cases} f(n) = f(n-1) + g(n-1) \\ g(n) = f(n-1) \\ f(0) = 0 \\ g(0) = 1 \end{cases} \Leftrightarrow \begin{cases} f(n) = f(n-1) + f(n-2) \\ f(0) = 0 \\ f(1) = 1 \end{cases} \end{cases}$$
Fibonacci

An LRS of order k is a sequence  $(u_l)_{l \in \mathbb{N}}$  such that,

$$u_I = X \cdot A^I \cdot Y,$$

where,  $A \in \mathbb{R}^{k \times k}$  and  $X, Y \in \mathbb{R}^{k}$ .

An LRS of order k is a sequence  $(u_I)_{I \in \mathbb{N}}$  such that,

$$u_l = X \cdot A^l \cdot Y,$$

where,  $A \in \mathbb{R}^{k \times k}$  and  $X, Y \in \mathbb{R}^{k}$ .

$$\mathsf{Fibonacci sequence} \Rightarrow \mathit{F_I} = \begin{bmatrix} 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

An LRS of order k is a sequence  $(u_l)_{l \in \mathbb{N}}$  such that,

$$u_l = X \cdot A^l \cdot Y,$$

where,  $A \in \mathbb{R}^{k \times k}$  and  $X, Y \in \mathbb{R}^{k}$ .

$$\mathsf{Fibonacci sequence} \Rightarrow \mathit{F_{l}} = \begin{bmatrix} 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

We will use mainly the following two properties of LRS:

#### Theorem:

- The *l*-th term of an LRS of order *k* can be computed in time  $O(log(l) \cdot k^3)$ .
- Two LRS of order at most k are equal if and only if they agree on the first k terms.

 $\alpha(I) = \text{No. of } I\text{-} \text{ length words accepted by } M.$ Acc(I) = No. of I- length accepting paths of M.

 $\alpha(I) = \text{No. of } I\text{-} \text{ length words accepted by } M.$ Acc(I) = No. of I- length accepting paths of M.

Now, clearly  $Acc(I) = I \cdot \Delta^{I} \cdot F$ .

 $\alpha(I) = \text{No. of } I\text{-} \text{ length words accepted by } M.$ Acc(I) = No. of I- length accepting paths of M.

Now, clearly  $Acc(I) = I.\Delta^{I}.F$ . Hence,  $(Acc(I))_{I \in \mathbb{N}}$  is an LRS of order *n*.

 $\alpha(I) = \text{No. of } I\text{-} \text{ length words accepted by } M.$ Acc(I) = No. of I- length accepting paths of M.

Now, clearly  $Acc(I) = I.\Delta^{I}.F$ . Hence,  $(Acc(I))_{I \in \mathbb{N}}$  is an LRS of order *n*. Now,  $|\Sigma|^{I}$  is an LRS of order 1.

 $\alpha(I) =$  No. of *I*- length words accepted by *M*. Acc(I) = No. of *I*-length accepting paths of *M*.

Now, clearly  $Acc(I) = I.\Delta^{I}.F$ . Hence,  $(Acc(I))_{I \in \mathbb{N}}$  is an LRS of order *n*. Now,  $|\Sigma|^{I}$  is an LRS of order 1.

M unambiguous

 $\alpha(I) = \text{No. of } I\text{-} \text{ length words accepted by } M.$ Acc(I) = No. of I- length accepting paths of M.

Now, clearly  $Acc(I) = I.\Delta^{I}.F$ . Hence,  $(Acc(I))_{I \in \mathbb{N}}$  is an LRS of order *n*. Now,  $|\Sigma|^{I}$  is an LRS of order 1.

M unambiguous  $\Rightarrow$  Each run corresponds to a word

 $\alpha(l) = \text{No. of } l\text{-} \text{ length words accepted by } M.$ Acc(l) = No. of l-length accepting paths of M.

Now, clearly  $Acc(I) = I . \Delta^{I} . F$ . Hence,  $(Acc(I))_{I \in \mathbb{N}}$  is an LRS of order *n*. Now,  $|\Sigma|^{I}$  is an LRS of order 1.

M unambiguous  $\Rightarrow$  Each run corresponds to a word  $\Rightarrow \alpha = Acc$ 

 $\alpha(l) = \text{No. of } l\text{-} \text{ length words accepted by } M.$ Acc(l) = No. of l-length accepting paths of M.

Now, clearly  $Acc(I) = I.\Delta^{I}.F$ . Hence,  $(Acc(I))_{I \in \mathbb{N}}$  is an LRS of order *n*. Now,  $|\Sigma|^{I}$  is an LRS of order 1.

*M* unambiguous  $\Rightarrow$  Each run corresponds to a word  $\Rightarrow \alpha = Acc$ Also enough to check for words up to length *n* 

 $\alpha(l) = \text{No. of } l\text{-} \text{ length words accepted by } M.$ Acc(l) = No. of l- length accepting paths of M.

Now, clearly  $Acc(I) = I.\Delta^{I}.F$ . Hence,  $(Acc(I))_{I \in \mathbb{N}}$  is an LRS of order *n*. Now,  $|\Sigma|^{I}$  is an LRS of order 1.

*M* unambiguous  $\Rightarrow$  Each run corresponds to a word  $\Rightarrow \alpha = Acc$ Also enough to check for words up to length  $n \Rightarrow$  Polynomial Time

What happens with finite ambiguity?

What happens with finite ambiguity?

Same approach fails!! The number of *l*-length accepted words does not correspond to *l*-length accepting paths any more.
What happens with finite ambiguity?

Same approach fails!! The number of *l*-length accepted words does not correspond to *l*-length accepting paths any more.

Given A, a k- ambiguous automaton(k-fixed). Construct  $A_p$  as follows:

What happens with finite ambiguity?

Same approach fails!! The number of *I*-length accepted words does not correspond to *I*-length accepting paths any more.

Given A, a k- ambiguous automaton(k-fixed). Construct  $A_p$  as follows: Consider a linear order < on states,

**States:**  $Q' = Q \cup Q^2 \cup \cdots \cup Q^p$  separated with at most (p-1) delimiters, **Transitions:** if for some state  $q \in Q$ ,  $q \xrightarrow{a} q_1 \& q \xrightarrow{a} q_2 \in \delta$  and  $q_1 < q_2$ , then  $q \xrightarrow{a} (q_1|q_2) \in \delta'$ ,

**Final state:** Final states of  $A_p$  will be  $(\underbrace{q_f | q_f | \cdots | q_f}_{p \text{ times}})$ 

What happens with finite ambiguity?

Same approach fails!! The number of *I*-length accepted words does not correspond to *I*-length accepting paths any more.

Given A, a k- ambiguous automaton(k-fixed). Construct  $A_p$  as follows: Consider a linear order < on states,

**States:**  $Q' = Q \cup Q^2 \cup \cdots \cup Q^p$  separated with at most (p-1) delimiters, **Transitions:** if for some state  $q \in Q$ ,  $q \stackrel{a}{\rightarrow} q_1 \& q \stackrel{a}{\rightarrow} q_2 \in \delta$  and  $q_1 < q_2$ , then  $q \stackrel{a}{\rightarrow} (q_1|q_2) \in \delta'$ , **Final state:** Final states of  $A_p$  will be  $(q_f|q_f| \cdots |q_f)$ 

p times

The idea is, we use the powerset construction capped to sets of size at most p with a linear ordering on states.

Universality Problem:



Universality Problem:







#### $A_p$ accepts all words that have at least p accepting runs on A.



 $A_p$  accepts all words that have at least p accepting runs on A. Also given the linear order on states,  $A_k$  is unambiguous, where k is the highest ambiguity.

 $\alpha(I)$  = the number of words of length *I* accepted by *A*,  $\alpha_p(I)$  = the number of words of length *I* having exactly *p* accepting runs over *A*.

 $\alpha(l)$  = the number of words of length l accepted by A,  $\alpha_p(l)$  = the number of words of length l having exactly p accepting runs over A.  $\Rightarrow \alpha(l) = \sum_{p=1}^k \alpha_p(l)$ 

 $\alpha(I) =$  the number of words of length *I* accepted by *A*,  $\alpha_p(I) =$  the number of words of length *I* having exactly *p* accepting runs over *A*.  $\Rightarrow \alpha(I) = \sum_{p=1}^k \alpha_p(I)$ 

Note that:

• each word having exactly p runs induce one run of  $A_p$ 

 $\alpha(I)$  = the number of words of length I accepted by A,  $\alpha_p(I)$  = the number of words of length I having exactly p accepting runs over A.  $\Rightarrow \alpha(I) = \sum_{p=1}^{k} \alpha_p(I)$ 

- each word having exactly p runs induce one run of  $A_p$
- each word having exactly p + 1 runs induce p + 1 runs of A<sub>p</sub>, obtained by choosing p runs among p + 1.

 $\alpha(l)$  = the number of words of length l accepted by A,  $\alpha_p(l)$  = the number of words of length l having exactly p accepting runs over A.  $\Rightarrow \alpha(l) = \sum_{p=1}^k \alpha_p(l)$ 

- each word having exactly p runs induce one run of  $A_p$
- each word having exactly p + 1 runs induce p + 1 runs of A<sub>p</sub>, obtained by choosing p runs among p + 1.
- more generally, each word having exactly j runs induce  $\binom{j}{p}$  runs of  $A_p$ , obtained by choosing p runs among j.

 $\alpha(l)$  = the number of words of length l accepted by A,  $\alpha_p(l)$  = the number of words of length l having exactly p accepting runs over A.  $\Rightarrow \alpha(l) = \sum_{p=1}^k \alpha_p(l)$ 

- each word having exactly p runs induce one run of  $A_p$
- each word having exactly p + 1 runs induce p + 1 runs of A<sub>p</sub>, obtained by choosing p runs among p + 1.
- more generally, each word having exactly j runs induce  $\binom{j}{p}$  runs of  $A_p$ , obtained by choosing p runs among j.

```
Acc_p(I) = No. of I-length paths in A_p
```

 $\alpha(l)$  = the number of words of length l accepted by A,  $\alpha_p(l)$  = the number of words of length l having exactly p accepting runs over A.  $\Rightarrow \alpha(l) = \sum_{p=1}^k \alpha_p(l)$ 

- each word having exactly p runs induce one run of  $A_p$
- each word having exactly p + 1 runs induce p + 1 runs of A<sub>p</sub>, obtained by choosing p runs among p + 1.
- more generally, each word having exactly j runs induce  $\binom{j}{p}$  runs of  $A_p$ , obtained by choosing p runs among j.

$$Acc_{p}(I) = No.$$
 of *I*-length paths in  $A_{p} = \sum_{j=p}^{k} {j \choose p} \alpha_{j}(I).$ 

Consider 
$$Acc = (Acc_1, Acc_2, \dots Acc_k)$$
 and  $\alpha = (\alpha_1, \alpha_2, \dots \alpha_k)$ .

Consider  $Acc = (Acc_1, Acc_2, ..., Acc_k)$  and  $\alpha = (\alpha_1, \alpha_2, ..., \alpha_k).Acc = M \cdot \alpha$ , where M is upper-triangular and invertible.

Consider  $Acc = (Acc_1, Acc_2, ..., Acc_k)$  and  $\alpha = (\alpha_1, \alpha_2, ..., \alpha_k).Acc = M \cdot \alpha$ , where M is upper-triangular and invertible.  $\alpha = M^{-1} \cdot Acc$ 

Consider  $Acc = (Acc_1, Acc_2, ..., Acc_k)$  and  $\alpha = (\alpha_1, \alpha_2, ..., \alpha_k).Acc = M \cdot \alpha$ , where M is upper-triangular and invertible.  $\alpha = M^{-1} \cdot Acc$ 

For each p, Acc<sub>p</sub> is LRS of order  $n^{O(k)}$ 

Consider  $Acc = (Acc_1, Acc_2, \dots Acc_k)$  and  $\alpha = (\alpha_1, \alpha_2, \dots \alpha_k).Acc = M \cdot \alpha$ , where M is upper-triangular and invertible.  $\alpha = M^{-1} \cdot Acc$ 

For each *p*,  $Acc_p$  is LRS of order  $n^{O(k)} \Rightarrow \alpha_p$  is LRS of order  $n^{O(k)}$ 

Consider  $Acc = (Acc_1, Acc_2, ... Acc_k)$  and  $\alpha = (\alpha_1, \alpha_2, ... \alpha_k).Acc = M \cdot \alpha$ , where M is upper-triangular and invertible.  $\alpha = M^{-1} \cdot Acc$ 

For each p,  $Acc_p$  is LRS of order  $n^{O(k)} \Rightarrow \alpha_p$  is LRS of order  $n^{O(k)} \Rightarrow$ Polynomial Time

# Outline

- Weighted Automata
- 2 Hankel Matrix
- 3 Ambiguity
- ④ Universality with Ambiguity
- 5 Introduction to Weighted Context-Free Grammar
  - 6 Learning WCFG
  - 7 Properties of WCFG







Ritam Raha







Weighted Context Free Grammar:

Weighted Context Free Grammar:

- Always in Greibach Normal Form
- left most derivation tree

Weighted Context Free Grammar:

- Always in Greibach Normal Form
- left most derivation tree

```
S \rightarrow aAB \ 1
A \rightarrow b \ 1 \ |bA \ 2
B \rightarrow b \ 1 \ |bB \ 3
```

#### WCFG - nonlinear extension: $S \rightarrow aAB \ 1$ $A \rightarrow b \ 1 \ |bA \ 2$ $B \rightarrow b \ 1 \ |bB \ 3$

Consider abbb:



Weighted Automata with ambiguity and extensions





Weighted Context Free Grammars

Ritam Raha

#### Parikh's Theorem:

Parikh Map : 
$$Pk(w) \stackrel{\text{def}}{=} (\#a_w, \#b_w, \ldots)$$

#### Parikh's Theorem

For every context-free grammar G, there is a regular language R such that Pk(L(G)) = Pk(L(R)).

## Parikh's Theorem:

Parikh Map : 
$$Pk(w) \stackrel{\text{def}}{=} (\#a_w, \#b_w, \ldots)$$

#### Parikh's Theorem

For every context-free grammar G, there is a regular language R such that Pk(L(G)) = Pk(L(R)).

Corollary: For every context-free grammar G on unary alphabet, there is a regular language R such that L(G) = L(R).







Ritam Raha







Ritam Raha




Parikh's Theorem for WCFG :

Parikh image for a WCFG (G, W) :

$$Pk\llbracket G\rrbracket_W(u) \stackrel{\text{def}}{=} \bigoplus_{u' \in \llbracket u \rrbracket_{Pk}} \llbracket G\rrbracket_W(u')$$

Parikh's Theorem for WCFG :

Parikh image for a WCFG (G, W) :

$$Pk\llbracket G\rrbracket_W(u) \stackrel{\text{def}}{=} \bigoplus_{u' \in [u]_{Pk}} \llbracket G\rrbracket_W(u')$$

#### Weighted Parikh's Theorem [BGV]

For every weighted context-free grammar (G,W) over an idempotent, commutative semiring, Parikh's theorem holds.

Parikh's Theorem for WCFG :

Parikh image for a WCFG (G, W) :

$$Pk\llbracket G\rrbracket_W(u) \stackrel{\text{def}}{=} \bigoplus_{u' \in [u]_{Pk}} \llbracket G\rrbracket_W(u')$$

#### Weighted Parikh's Theorem [BGV]

For every weighted context-free grammar (G,W) over an idempotent, commutative semiring, Parikh's theorem holds.

#### Note: Idempotent is really necessary!!

Ritam Raha







Ritam Raha





```
Consider the grammar: S \rightarrow aSS \ 1 \ |a \ 1
```

```
Consider the grammar: S \rightarrow aSS \ 1 \ |a \ 1
```

This grammar only produces words of the form  $a^{2k+1}$ .

```
Consider the grammar: S \rightarrow aSS \ 1 \ |a \ 1
```

This grammar only produces words of the form  $a^{2k+1}$ .

The number of derivation trees of the word  $a^{2k+1}$  is  $C_k$ , *k*-th Catalan Number.

Consider the grammar:  $S \rightarrow aSS \ 1 \ |a \ 1$ 

This grammar only produces words of the form  $a^{2k+1}$ .

The number of derivation trees of the word  $a^{2k+1}$  is  $C_k$ , k-th Catalan Number.  $\Rightarrow$  weight of  $(a^{2k+1}) = C_k$ .

Consider the grammar:  $S \rightarrow aSS \ 1 \ |a \ 1$ 

This grammar only produces words of the form  $a^{2k+1}$ .

The number of derivation trees of the word  $a^{2k+1}$  is  $C_k$ , k-th Catalan Number.  $\Rightarrow$  weight of  $(a^{2k+1}) = C_k$ .

It can be shown that generating function of Catalan number is not rational.

Consider the grammar:  $S \rightarrow aSS \ 1 \ |a \ 1$ 

This grammar only produces words of the form  $a^{2k+1}$ .

The number of derivation trees of the word  $a^{2k+1}$  is  $C_k$ , k-th Catalan Number.  $\Rightarrow$  weight of  $(a^{2k+1}) = C_k$ .

It can be shown that generating function of Catalan number is not rational.  $\Rightarrow$  There is no equivalent WFA accepting the same weighted-language.

Consider the grammar:  $S \rightarrow aSS \ 1 \ |a \ 1$ 

This grammar only produces words of the form  $a^{2k+1}$ .

The number of derivation trees of the word  $a^{2k+1}$  is  $C_k$ , k-th Catalan Number.  $\Rightarrow$  weight of  $(a^{2k+1}) = C_k$ .

It can be shown that generating function of Catalan number is not rational.  $\Rightarrow$  There is no equivalent WFA accepting the same weighted-language.

Now, you can really believe, it is an extension !!

# Outline

- Weighted Automata
- 2 Hankel Matrix
- 3 Ambiguity
- 4 Universality with Ambiguity
- 5 Introduction to Weighted Context-Free Grammar
- 6 Learning WCFG
  - 7 Properties of WCFG

We know that the Hankel matrix for functions  $f : \Sigma^* \to \mathbb{R}$  can be used to characterise functions recognised by weighted automata.

We know that the Hankel matrix for functions  $f : \Sigma^* \to \mathbb{R}$  can be used to characterise functions recognised by weighted automata. Can we do something similar for WCFG?

We know that the Hankel matrix for functions  $f : \Sigma^* \to \mathbb{R}$  can be used to characterise functions recognised by weighted automata. *Can we do something similar for WCFG?* 

The same kind of Hankel Matrix does not contain enough information, i.e. it can have infinite rank though recognised by a WCFG.

We know that the Hankel matrix for functions  $f : \Sigma^* \to \mathbb{R}$  can be used to characterise functions recognised by weighted automata. *Can we do something similar for WCFG?* 

The same kind of Hankel Matrix does not contain enough information, i.e. it can have infinite rank though recognised by a WCFG.

Bailly, Carreras, Luque, and Quattoni presented a similar Hankel-like theorem in their paper.

We know that the Hankel matrix for functions  $f : \Sigma^* \to \mathbb{R}$  can be used to characterise functions recognised by weighted automata. *Can we do something similar for WCFG?* 

The same kind of Hankel Matrix does not contain enough information, i.e. it can have infinite rank though recognised by a WCFG.

Bailly, Carreras, Luque, and Quattoni presented a similar Hankel-like theorem in their paper.

But, the idea is WRONG!!

The idea was following:

The idea was following: We consider functions  $f : O \times I \to \mathbb{R}$ , where  $O \in \Sigma^* \times \Sigma^*$  and  $I \in \Sigma^+$ .  $f(\langle x; z \rangle, y) = \llbracket G \rrbracket_W(xyz).$ 

The idea was following: We consider functions  $f : O \times I \to \mathbb{R}$ , where  $O \in \Sigma^* \times \Sigma^*$  and  $I \in \Sigma^+$ .  $f(\langle x; z \rangle, y) = \llbracket G \rrbracket_W(xyz).$ 

To compute this function, they defined two functions:

Inside Function:  $\overline{\beta}_G(i \Rightarrow^* y)$  [Intuitively, denotes the weight of deriving y from a non-terminal i]

Outside Function:  $\overline{\alpha}_G(x; i; z)$ [Intuitively denotes the weight of derivation of the context $\langle x; z \rangle$ ]

Hence,  $\llbracket G \rrbracket_W(xyz) = \sum_{i \in V} \overline{\alpha}_G(x; i; z) \overline{\beta}_G(i \Rightarrow^* y).$ 

# Hence, $\llbracket G \rrbracket_W(xyz) = \sum_{i \in V} \overline{\alpha}_G(x; i; z) \overline{\beta}_G(i \Rightarrow^* y).$

Using, this idea they constructed the hankel matrix for WCFG like the following:

Hence, 
$$\llbracket G \rrbracket_W(xyz) = \sum_{i \in V} \overline{\alpha}_G(x; i; z) \overline{\beta}_G(i \Rightarrow^* y).$$

Using, this idea they constructed the hankel matrix for WCFG like the following:

$$H_{O \times I} = \langle x; z \rangle \begin{pmatrix} y \\ \vdots \\ \vdots \\ G \end{bmatrix}_{W} (xyz) \end{pmatrix}$$

Hence, 
$$\llbracket G \rrbracket_W(xyz) = \sum_{i \in V} \overline{\alpha}_G(x; i; z) \overline{\beta}_G(i \Rightarrow^* y).$$

Using, this idea they constructed the hankel matrix for WCFG like the following:

$$H_{O \times I} = \langle x; z \rangle \begin{pmatrix} y \\ \vdots \\ \vdots \\ \vdots \\ G \end{bmatrix}_{W} (xyz) \end{pmatrix}$$

This matrix has finite rank. Surprisingly, their following theorem says, this is enough information to learn the WCFG.

#### Theorem [BCLQ]

Given a complete basis for the Hankel Matrix defined above for a function f recognized by a WCFG, we can effectively construct the WCFG from that basis.

#### Theorem [BCLQ]

Given a complete basis for the Hankel Matrix defined above for a function f recognized by a WCFG, we can effectively construct the WCFG from that basis.

But this idea is WRONG!!!

#### Theorem [BCLQ]

Given a complete basis for the Hankel Matrix defined above for a function f recognized by a WCFG, we can effectively construct the WCFG from that basis.

But this idea is WRONG!!!

We now give a counter-example.

Precisely, the wrong claim is that for any  $f : (\Sigma^* \times \Sigma^*) \times \Sigma^+ \to \mathbb{R}$ , one can construct a weighted context-free grammar computing f with the number of non-terminals being the rank of  $H_f$ .

Precisely, the wrong claim is that for any  $f : (\Sigma^* \times \Sigma^*) \times \Sigma^+ \to \mathbb{R}$ , one can construct a weighted context-free grammar computing f with the number of non-terminals being the rank of  $H_f$ .

We start from the function  $f : Tree(\Sigma) \to \mathbb{R}$  assigning 1 to the following two trees, and 0 to any other tree.





#### Clearly, there exists a WCFG with 6 non-terminals defining the function f.

Clearly, there exists a WCFG with 6 non-terminals defining the function f.

But if we construct the Hankel Matrix for the function  $f : O \times I \to \mathbb{R}$  for this, we will see it has rank 5.

Clearly, there exists a WCFG with 6 non-terminals defining the function f.

But if we construct the Hankel Matrix for the function  $f : O \times I \to \mathbb{R}$  for this, we will see it has rank 5.

But, no WCFG with 5 non-terminals accept this language.

What went wrong??

What went wrong??

There exists a natural extension for Fliess' theorem for Weighted tree automata by Bozapalidis and Louscou-Bozapalidou( [BL83]).

What went wrong??

There exists a natural extension for Fliess' theorem for Weighted tree automata by Bozapalidis and Louscou-Bozapalidou( [BL83]). Consider a function  $f : Tree(\Sigma) \to \mathbb{R}$ . A context is a tree over the signature  $\Sigma \cup \Box(0)$  with the restriction that  $\Box$  occurs only once.
What went wrong??

There exists a natural extension for Fliess' theorem for Weighted tree automata by Bozapalidis and Louscou-Bozapalidou( [BL83]). Consider a function  $f : Tree(\Sigma) \to \mathbb{R}$ . A context is a tree over the signature  $\Sigma \cup \Box(0)$  with the restriction that  $\Box$  occurs only once.

A context *c* and a tree *t*, yield a tree c[t], where we substitute the leaf  $\Box$  in *c* by *t*.

Naturally the Hankel Matrix  $H_f \in \mathbb{R}^{Context(\Sigma) \times Tree(\Sigma)}$  such that  $H_f(c,t) = f(c[t])$  can be defined and the Fliess' theorem can be extended over this.

Now, consider the previous language. The tree hankel matrix will correctly have rank 6 for the function f, but the WCFG hankel matrix will have rank 5.

Now, consider the previous language. The tree hankel matrix will correctly have rank 6 for the function f, but the WCFG hankel matrix will have rank 5.Why?

Now, consider the previous language. The tree hankel matrix will correctly have rank 6 for the function f, but the WCFG hankel matrix will have rank 5.Why?

This is beacuse the row for the context  $\langle a; a \rangle$  has value 1 for *b* and *c* according to Baily et al's Hankel Matrix.

Now, consider the previous language. The tree hankel matrix will correctly have rank 6 for the function f, but the WCFG hankel matrix will have rank 5.Why?

This is beacuse the row for the context  $\langle a; a \rangle$  has value 1 for *b* and *c* according to Baily et al's Hankel Matrix.

But, for the tree hankel matrix it will have two seperate contexts:

Now, consider the previous language. The tree hankel matrix will correctly have rank 6 for the function f, but the WCFG hankel matrix will have rank 5.Why?

This is beacuse the row for the context  $\langle a; a \rangle$  has value 1 for *b* and *c* according to Baily et al's Hankel Matrix.

But, for the tree hankel matrix it will have two seperate contexts:



а а

# Outline

#### Weighted Automata

- 2 Hankel Matrix
- 3 Ambiguity
- Universality with Ambiguity
- Introduction to Weighted Context-Free Grammar
- 6 Learning WCFG
- Properties of WCFG

Let's come back to LRS again:

Let's come back to LRS again: Linear Recurrence System: Each term of a sequence is a linear function of earlier terms in the sequence.

$$\begin{cases} f(n) = f(n-1) + g(n-1) \\ g(n) = f(n-1) \\ f(0) = 0 \\ g(0) = 1 \end{cases} \Leftrightarrow \begin{cases} f(n) = f(n-1) + f(n-2) \\ f(0) = 0 \\ f(1) = 1 \end{cases} \end{cases}$$
Fibonacci

Consider  $\Sigma = \{a\}$ 

Consider 
$$\Sigma = \{a\}$$
  
 $f: \Sigma^* \to \mathbb{R} \Rightarrow f': \mathbb{N} \to \mathbb{R} \left[ f'(n) = f(a^n) \right]$ 

Consider 
$$\Sigma = \{a\}$$
  
 $f: \Sigma^* \to \mathbb{R} \Rightarrow f': \mathbb{N} \to \mathbb{R} \left[ f'(n) = f(a^n) \right]$ 



Consider 
$$\Sigma = \{a\}$$
  
 $f: \Sigma^* \to \mathbb{R} \Rightarrow f': \mathbb{N} \to \mathbb{R} \left[ f'(n) = f(a^n) \right]$ 



Consider 
$$\Sigma = \{a\}$$
  
 $f: \Sigma^* \to \mathbb{R} \Rightarrow f': \mathbb{N} \to \mathbb{R} \left[ f'(n) = f(a^n) \right]$ 



Consider 
$$\Sigma = \{a\}$$
  
 $f: \Sigma^* \to \mathbb{R} \Rightarrow f': \mathbb{N} \to \mathbb{R} \left[ f'(n) = f(a^n) \right]$ 



Consider 
$$\Sigma = \{a\}$$
  
 $f: \Sigma^* \to \mathbb{R} \Rightarrow f': \mathbb{N} \to \mathbb{R} \left[ f'(n) = f(a^n) \right]$ 



#### Intuitively, counting the number of paths!!

Ritam Raha

WFA on one letter alphabet  $\Rightarrow$  Linear Recurrence System

WFA on one letter alphabet  $\Rightarrow$  Linear Recurrence System Intuition was to count the number of accepting runs!!

WFA on one letter alphabet  $\Rightarrow$  Linear Recurrence System Intuition was to count the number of accepting runs!!

WCFG  $\Rightarrow$  ??

WFA on one letter alphabet  $\Rightarrow$  Linear Recurrence System Intuition was to count the number of accepting runs!!

WCFG  $\Rightarrow$  ??

Now, Intuition is to count the number of derivation trees!!

WFA on one letter alphabet  $\Rightarrow$  Linear Recurrence System Intuition was to count the number of accepting runs!!

WCFG  $\Rightarrow$  ??

Now, Intuition is to count the number of derivation trees!!

 $S \rightarrow aA_1$  3  $|aA_3A_4|$  2

WFA on one letter alphabet  $\Rightarrow$  Linear Recurrence System Intuition was to count the number of accepting runs!!

WCFG  $\Rightarrow$  ??

Now, Intuition is to count the number of derivation trees!!

 $S \rightarrow aA_1$  3  $|aA_3A_4|$  2

$$S(n) = 3.A_1(n-1) + 2.A_3 * A_4(n-1)$$
, where  $f * g(k) = \sum_{i=0}^{k} f(i).g(k-i)$ 

Same idea as in Catalan number!!

WFA on one letter alphabet  $\Rightarrow$  Linear Recurrence System Intuition was to count the number of accepting runs!!

WCFG  $\Rightarrow$  ??

Now, Intuition is to count the number of derivation trees!!

 $S \rightarrow aA_1$  3  $|aA_3A_4|$  2

$$S(n) = 3.A_1(n-1) + 2.A_3 * A_4(n-1)$$
, where  $f * g(k) = \sum_{i=0}^{k} f(i).g(k-i)$ 

Same idea as in Catalan number!!

WCFG  $\Rightarrow$  Linear Recurrence System with finitely many Cauchy product.

Function recognized by WFA on one letter <code>alphabet</code>  $\Rightarrow$  <code>Rational</code> function

Function recognized by WFA on one letter <code>alphabet</code>  $\Rightarrow$  <code>Rational</code> function

Function recognized by WCFG on one letter alphabet  $\Rightarrow$  Something special??

Function recognized by WFA on one letter <code>alphabet</code>  $\Rightarrow$  <code>Rational</code> function

Function recognized by WCFG on one letter alphabet  $\Rightarrow$  Something special??

Formally, let  $p_k$  = weight of the word  $a^k$  in *G*. Can we characterize the power series  $P(x) = \sum_{k=0}^{\infty} p_k x^k$ ?

Function recognized by WFA on one letter <code>alphabet</code>  $\Rightarrow$  <code>Rational</code> function

Function recognized by WCFG on one letter alphabet  $\Rightarrow$  Something special??

Formally, let  $p_k$  = weight of the word  $a^k$  in G. Can we characterize the power series  $P(x) = \sum_{k=0}^{\infty} p_k x^k$ ?

Notice that this is the generating function of the given weighted grammar.

#### Chomsky-Schützenberger Enumeration Theorem

If *L* is a context-free language admitting an unambiguous context-free grammar, and  $a_k := |L \cap \Sigma^k|$  is the number of words of length *k* in *L*, then  $G(x) = \sum_{k=0}^{\infty} a_k x^k$  is a power series over  $\mathbb{N}$  that is algebraic over  $\mathbb{Q}(x)$ .

#### Chomsky-Schützenberger Enumeration Theorem

If *L* is a context-free language admitting an unambiguous context-free grammar, and  $a_k := |L \cap \Sigma^k|$  is the number of words of length *k* in *L*, then  $G(x) = \sum_{k=0}^{\infty} a_k x^k$  is a power series over  $\mathbb{N}$  that is algebraic over  $\mathbb{Q}(x)$ .

Consider any unary WCFG G on semiring  $\mathbb{N}$  with all weights 1. For every rule, we replace the terminal a with a new terminal and produce a different grammar G' on a large alphabet.

#### Chomsky-Schützenberger Enumeration Theorem

If *L* is a context-free language admitting an unambiguous context-free grammar, and  $a_k := |L \cap \Sigma^k|$  is the number of words of length *k* in *L*, then  $G(x) = \sum_{k=0}^{\infty} a_k x^k$  is a power series over  $\mathbb{N}$  that is algebraic over  $\mathbb{Q}(x)$ .

Consider any unary WCFG G on semiring  $\mathbb{N}$  with all weights 1. For every rule, we replace the terminal a with a new terminal and produce a different grammar G' on a large alphabet.

It can be shown that, G' is unambiguous and ambiguity of  $a^k$  in G = number of k-length words in G'.

#### Chomsky-Schützenberger Enumeration Theorem

If *L* is a context-free language admitting an unambiguous context-free grammar, and  $a_k := |L \cap \Sigma^k|$  is the number of words of length *k* in *L*, then  $G(x) = \sum_{k=0}^{\infty} a_k x^k$  is a power series over  $\mathbb{N}$  that is algebraic over  $\mathbb{Q}(x)$ .

Consider any unary WCFG G on semiring  $\mathbb{N}$  with all weights 1. For every rule, we replace the terminal a with a new terminal and produce a different grammar G' on a large alphabet.

It can be shown that, G' is unambiguous and ambiguity of  $a^k$  in G = number of k-length words in G'.

What happens if all the weights are not 1?

Suppose some rule has weight  $k \in \mathbb{N}$ .

Suppose some rule has weight  $k \in \mathbb{N}$ . We will simply produce k- copies of the same rule with k- new terminals.

Suppose some rule has weight  $k \in \mathbb{N}$ . We will simply produce k- copies of the same rule with k- new terminals. a huge alphabet!!

Suppose some rule has weight  $k \in \mathbb{N}$ . We will simply produce k- copies of the same rule with k- new terminals. a huge alphabet!!

Now, weight of  $a^k$  in G = number of k-length words in G'.

Suppose some rule has weight  $k \in \mathbb{N}$ . We will simply produce k- copies of the same rule with k- new terminals. a huge alphabet!!

Now, weight of  $a^k$  in G = number of k-length words in G'. Apply Enumeration Theorem!!
## WCFG & mathematical characterization:

Suppose some rule has weight  $k \in \mathbb{N}$ . We will simply produce k- copies of the same rule with k- new terminals. a huge alphabet!!

Now, weight of  $a^k$  in G = number of k-length words in G'. Apply Enumeration Theorem!!

#### Corollary

Given a WCFG on  $\mathbb{N}$  on a unary alphabet, the generating function  $P(x) = \sum_{k=0}^{\infty} p_k x^k$  is algebraic over  $\mathbb{Q}(x)$ .

### Conclusion

**Further Questions:** 

- How to effectively learn a Weighted Context-Free Grammar?
- Better mathematical characterizations for functions realized by WCFG?

### References

Raphaël Bailly, Xavier Carreras, Franco M. Luque, and Ariadna Quattoni.

Unsupervised spectral learning of WCFG as low-rank matrix completion.

Vijay Bhattiprolu, Spencer Gordon, and Mahesh Viswanathan. Extending parikh's theorem to weighted and probabilistic context-free grammars.

Lecture Notes in Computer Science.

Symeon Bozapalidis and Olympia Louscou-Bozapalidou. The rank of a formal tree power series. *Theor. Comput. Sci.*, 27:211–215, 1983.

Nathanael Fijalkow.

Blog-post on angluin's style learning for weighted automata.

#### Nathanael Fijalkow.

Blog-post on fliess' theorem for minimising weighted automata.

# Thank you!!

