
Weighted Automata
with Ambiguity and Extensions

Ritam Raha 1 Nathanaël Fijalkow 2 Filip Mazowiecki 2

Vincent Penelle 2 Nathan Lhote 2

1Chennai Mathematical Institute

2LaBRI, Bordeaux

Formal Methods and Verification Seminar - ULB
December 4, 2018

Ritam Raha Weighted Automata with ambiguity and extensions 1 / 51

Outline

1 Weighted Automata

2 Hankel Matrix

3 Ambiguity

4 Universality with Ambiguity

5 Introduction to Weighted Context-Free Grammar

6 Learning WCFG

7 Properties of WCFG

Ritam Raha Weighted Automata with ambiguity and extensions 2 / 51

Outline

1 Weighted Automata

2 Hankel Matrix

3 Ambiguity

4 Universality with Ambiguity

5 Introduction to Weighted Context-Free Grammar

6 Learning WCFG

7 Properties of WCFG

Ritam Raha Weighted Automata with ambiguity and extensions 3 / 51

Weighted Automata:

Automata

start
b

a,b

a

b a,b

f : Σ∗ → {0, 1}

Weighted Automata

start
b 1

a 0,b 0

a 0

b 1 a 0,b 0

f : Σ∗ → S (Semiring)

Ritam Raha Weighted Automata with ambiguity and extensions 4 / 51

Weighted Automata:

Automata

start
b

a,b

a

b a,b

f : Σ∗ → {0, 1}

Weighted Automata

start
b 1

a 0,b 0

a 0

b 1 a 0,b 0

f : Σ∗ → S (Semiring)

Ritam Raha Weighted Automata with ambiguity and extensions 4 / 51

Weighted Automata:

Automata

start
b

a,b

a

b a,b

f : Σ∗ → {0, 1}

Weighted Automata

start
b 1

a 0,b 0

a 0

b 1 a 0,b 0

f : Σ∗ → S (Semiring)

Ritam Raha Weighted Automata with ambiguity and extensions 4 / 51

Weighted Automata:

Automata

start
b

a,b

a

b a,b

f : Σ∗ → {0, 1}

Weighted Automata

start
b 1

a 0,b 0

a 0

b 1 a 0,b 0

f : Σ∗ → S (Semiring)

Ritam Raha Weighted Automata with ambiguity and extensions 4 / 51

Weighted Automata:

Automata

start
b

a,b

a

b a,b

f : Σ∗ → {0, 1}

Weighted Automata

start
b 1

a 0,b 0

a 0

b 1 a 0,b 0

f : Σ∗ → S

(Semiring)

Ritam Raha Weighted Automata with ambiguity and extensions 4 / 51

Weighted Automata:

Automata

start
b

a,b

a

b a,b

f : Σ∗ → {0, 1}

Weighted Automata

start
b 1

a 0,b 0

a 0

b 1 a 0,b 0

f : Σ∗ → S (Semiring)

Ritam Raha Weighted Automata with ambiguity and extensions 4 / 51

Weighted Automata:

Semiring
S(⊕,�, 0,1)

Examples:

Natural Semiring : N(+, ·, 0, 1)

Tropical Semiring:

N∞(min,+,∞, 0) Min-plus Semiring

or

N−∞(max,+,−∞, 0) Max-plus Semiring

Ritam Raha Weighted Automata with ambiguity and extensions 5 / 51

Weighted Automata:

Semiring
S(⊕,�, 0,1)

Examples:

Natural Semiring : N(+, ·, 0, 1)

Tropical Semiring:

N∞(min,+,∞, 0) Min-plus Semiring

or

N−∞(max,+,−∞, 0) Max-plus Semiring

Ritam Raha Weighted Automata with ambiguity and extensions 5 / 51

Weighted Automata:

start
b 1

a 0,b 0

a 0

b 1 a 0,b 0

Max-plus Semiring

Consider the word bbab:

b b a b b b a b b b a b
1 +1 +0 +0=2 0 +1 +0 +0=1 0 +0 +0 +1=1

Output: max{2, 1, 1} = 2
In general: � transitions, ⊕ runs

Counting the length of the longest b-block

Ritam Raha Weighted Automata with ambiguity and extensions 6 / 51

Weighted Automata:

start
b 1

a 0,b 0

a 0

b 1 a 0,b 0

Max-plus Semiring

Consider the word bbab:

b b a b b b a b b b a b
1 +1 +0 +0=2 0 +1 +0 +0=1 0 +0 +0 +1=1

Output: max{2, 1, 1} = 2
In general: � transitions, ⊕ runs

Counting the length of the longest b-block

Ritam Raha Weighted Automata with ambiguity and extensions 6 / 51

Weighted Automata:

start
b 1

a 0,b 0

a 0

b 1 a 0,b 0

Max-plus Semiring

Consider the word bbab:

b b a b b b a b b b a b
1 +1 +0 +0=2 0 +1 +0 +0=1 0 +0 +0 +1=1

Output: max{2, 1, 1} = 2
In general: � transitions, ⊕ runs

Counting the length of the longest b-block

Ritam Raha Weighted Automata with ambiguity and extensions 6 / 51

Weighted Automata:

start
b 1

a 0,b 0

a 0

b 1 a 0,b 0

Max-plus Semiring

Consider the word bbab:

b b a b b b a b b b a b
1 +1 +0 +0=2 0 +1 +0 +0=1 0 +0 +0 +1=1

Output: max{2, 1, 1} = 2
In general: � transitions, ⊕ runs

Counting the length of the longest b-block

Ritam Raha Weighted Automata with ambiguity and extensions 6 / 51

Weighted Automata:

start
b 1

a 0,b 0

a 0

b 1 a 0,b 0

Max-plus Semiring

Consider the word bbab:

b b a b b b a b b b a b
1 +1 +0 +0=2 0 +1 +0 +0=1 0 +0 +0 +1=1

Output: max{2, 1, 1} = 2

In general: � transitions, ⊕ runs

Counting the length of the longest b-block

Ritam Raha Weighted Automata with ambiguity and extensions 6 / 51

Weighted Automata:

start
b 1

a 0,b 0

a 0

b 1 a 0,b 0

Max-plus Semiring

Consider the word bbab:

b b a b b b a b b b a b
1 +1 +0 +0=2 0 +1 +0 +0=1 0 +0 +0 +1=1

Output: max{2, 1, 1} = 2
In general: � transitions, ⊕ runs

Counting the length of the longest b-block

Ritam Raha Weighted Automata with ambiguity and extensions 6 / 51

Weighted Automata:

start
b 1

a 0,b 0

a 0

b 1 a 0,b 0

Max-plus Semiring

Consider the word bbab:

b b a b b b a b b b a b
1 +1 +0 +0=2 0 +1 +0 +0=1 0 +0 +0 +1=1

Output: max{2, 1, 1} = 2
In general: � transitions, ⊕ runs

Counting the length of the longest b-block

Ritam Raha Weighted Automata with ambiguity and extensions 6 / 51

Outline

1 Weighted Automata

2 Hankel Matrix

3 Ambiguity

4 Universality with Ambiguity

5 Introduction to Weighted Context-Free Grammar

6 Learning WCFG

7 Properties of WCFG

Ritam Raha Weighted Automata with ambiguity and extensions 7 / 51

Hankel Matrix:
Alternatively, we can see a weighted automata A on a Semiring S like the
following:

A = 〈Q, α ∈ SQ , (∆(a) ∈ SQ×Q)a∈Σ, η ∈ SQ〉
A recognizes a function f : Σ∗ → S , where
f (a1 . . . an) = α.∆(a1) . . .∆(an)︸ ︷︷ ︸

∆(a1...an)

.η

Now, consider a bi-infinite matrix Hf ∈ SΣ∗×Σ∗ , such that
Hf (u, v) = f (uv).

Hf =

v

.

.
u . . f (uv)

This is called Hankel Matrix.

Ritam Raha Weighted Automata with ambiguity and extensions 8 / 51

Hankel Matrix:
Alternatively, we can see a weighted automata A on a Semiring S like the
following:
A = 〈Q, α ∈ SQ , (∆(a) ∈ SQ×Q)a∈Σ, η ∈ SQ〉

A recognizes a function f : Σ∗ → S , where
f (a1 . . . an) = α.∆(a1) . . .∆(an)︸ ︷︷ ︸

∆(a1...an)

.η

Now, consider a bi-infinite matrix Hf ∈ SΣ∗×Σ∗ , such that
Hf (u, v) = f (uv).

Hf =

v

.

.
u . . f (uv)

This is called Hankel Matrix.

Ritam Raha Weighted Automata with ambiguity and extensions 8 / 51

Hankel Matrix:
Alternatively, we can see a weighted automata A on a Semiring S like the
following:
A = 〈Q, α ∈ SQ , (∆(a) ∈ SQ×Q)a∈Σ, η ∈ SQ〉
A recognizes a function f : Σ∗ → S , where
f (a1 . . . an) = α.∆(a1) . . .∆(an)︸ ︷︷ ︸

∆(a1...an)

.η

Now, consider a bi-infinite matrix Hf ∈ SΣ∗×Σ∗ , such that
Hf (u, v) = f (uv).

Hf =

v

.

.
u . . f (uv)

This is called Hankel Matrix.

Ritam Raha Weighted Automata with ambiguity and extensions 8 / 51

Hankel Matrix:
Alternatively, we can see a weighted automata A on a Semiring S like the
following:
A = 〈Q, α ∈ SQ , (∆(a) ∈ SQ×Q)a∈Σ, η ∈ SQ〉
A recognizes a function f : Σ∗ → S , where
f (a1 . . . an) = α.∆(a1) . . .∆(an)︸ ︷︷ ︸

∆(a1...an)

.η

Now, consider a bi-infinite matrix Hf ∈ SΣ∗×Σ∗ , such that
Hf (u, v) = f (uv).

Hf =

v

.

.
u . . f (uv)

This is called Hankel Matrix.

Ritam Raha Weighted Automata with ambiguity and extensions 8 / 51

Hankel Matrix:
Alternatively, we can see a weighted automata A on a Semiring S like the
following:
A = 〈Q, α ∈ SQ , (∆(a) ∈ SQ×Q)a∈Σ, η ∈ SQ〉
A recognizes a function f : Σ∗ → S , where
f (a1 . . . an) = α.∆(a1) . . .∆(an)︸ ︷︷ ︸

∆(a1...an)

.η

Now, consider a bi-infinite matrix Hf ∈ SΣ∗×Σ∗ , such that
Hf (u, v) = f (uv).

Hf =

v

.

.
u . . f (uv)

This is called Hankel Matrix.

Ritam Raha Weighted Automata with ambiguity and extensions 8 / 51

Hankel Matrix:
Alternatively, we can see a weighted automata A on a Semiring S like the
following:
A = 〈Q, α ∈ SQ , (∆(a) ∈ SQ×Q)a∈Σ, η ∈ SQ〉
A recognizes a function f : Σ∗ → S , where
f (a1 . . . an) = α.∆(a1) . . .∆(an)︸ ︷︷ ︸

∆(a1...an)

.η

Now, consider a bi-infinite matrix Hf ∈ SΣ∗×Σ∗ , such that
Hf (u, v) = f (uv).

Hf =

v

.

.
u . . f (uv)

This is called Hankel Matrix.
Ritam Raha Weighted Automata with ambiguity and extensions 8 / 51

Hankel Matrix:

Theorem: (Fliess ’74) [Fijb]

Any automaton recognizing f has at least rank(Hf) many states,

There exists an automaton recognizing f with rank(Hf) many states.

Application:

Given a rational function f , we can effectively construct the minimal
weighted automaton recognizing f .

Weighted automata over the reals can be learned efficiently in
Angluin’s supervised scenario. [Fija]

Some more applications will follow...

Ritam Raha Weighted Automata with ambiguity and extensions 9 / 51

Hankel Matrix:

Theorem: (Fliess ’74) [Fijb]

Any automaton recognizing f has at least rank(Hf) many states,

There exists an automaton recognizing f with rank(Hf) many states.

Application:

Given a rational function f , we can effectively construct the minimal
weighted automaton recognizing f .

Weighted automata over the reals can be learned efficiently in
Angluin’s supervised scenario. [Fija]

Some more applications will follow...

Ritam Raha Weighted Automata with ambiguity and extensions 9 / 51

Hankel Matrix:

Theorem: (Fliess ’74) [Fijb]

Any automaton recognizing f has at least rank(Hf) many states,

There exists an automaton recognizing f with rank(Hf) many states.

Application:

Given a rational function f , we can effectively construct the minimal
weighted automaton recognizing f .

Weighted automata over the reals can be learned efficiently in
Angluin’s supervised scenario. [Fija]

Some more applications will follow...

Ritam Raha Weighted Automata with ambiguity and extensions 9 / 51

Hankel Matrix:

Theorem: (Fliess ’74) [Fijb]

Any automaton recognizing f has at least rank(Hf) many states,

There exists an automaton recognizing f with rank(Hf) many states.

Application:

Given a rational function f , we can effectively construct the minimal
weighted automaton recognizing f .

Weighted automata over the reals can be learned efficiently in
Angluin’s supervised scenario. [Fija]

Some more applications will follow...

Ritam Raha Weighted Automata with ambiguity and extensions 9 / 51

Outline

1 Weighted Automata

2 Hankel Matrix

3 Ambiguity

4 Universality with Ambiguity

5 Introduction to Weighted Context-Free Grammar

6 Learning WCFG

7 Properties of WCFG

Ritam Raha Weighted Automata with ambiguity and extensions 10 / 51

Ambiguity:

Counts the number of accepting runs of a word!

Ritam Raha Weighted Automata with ambiguity and extensions 11 / 51

Ambiguity:

Counts the number of accepting runs of a word!
If all words have maximum one accepting run - Unambiguous

start
b

b a

Ritam Raha Weighted Automata with ambiguity and extensions 11 / 51

Ambiguity:

Counts the number of accepting runs of a word!
If all words have finitely many accepting run - Finite ambiguous

start

b

b

b

b

b

Ritam Raha Weighted Automata with ambiguity and extensions 11 / 51

Ambiguity:

Counts the number of accepting runs of a word!
If the maximum degree of ambiguity is bounded by some polynomial in the
length of the word - Polynomially ambiguous

start
b

b

b

b

Ritam Raha Weighted Automata with ambiguity and extensions 11 / 51

Ambiguity:

Counts the number of accepting runs of a word!
If the degree of ambiguity is not bounded- Exponentially ambiguous

start

b
b

b

Ritam Raha Weighted Automata with ambiguity and extensions 11 / 51

Ambiguity:

Counts the number of accepting runs of a word!
If the degree of ambiguity is not bounded- Exponentially ambiguous

start

bb

b

It can be shown that these are the only options for ambiguity of an
automata.

Ritam Raha Weighted Automata with ambiguity and extensions 11 / 51

Outline

1 Weighted Automata

2 Hankel Matrix

3 Ambiguity

4 Universality with Ambiguity

5 Introduction to Weighted Context-Free Grammar

6 Learning WCFG

7 Properties of WCFG

Ritam Raha Weighted Automata with ambiguity and extensions 12 / 51

Universality Problem:

Given an automaton M on alphabet Σ, is L(M) = Σ∗?

Universality problem for any general NFA is PSPACE-complete.

What happens with ambiguity?

Ritam Raha Weighted Automata with ambiguity and extensions 13 / 51

Universality Problem:

Given an automaton M on alphabet Σ, is L(M) = Σ∗?

Universality problem for any general NFA is PSPACE-complete.

What happens with ambiguity?

Ritam Raha Weighted Automata with ambiguity and extensions 13 / 51

Universality Problem:

Given an automaton M on alphabet Σ, is L(M) = Σ∗?

Universality problem for any general NFA is PSPACE-complete.

What happens with ambiguity?

Ritam Raha Weighted Automata with ambiguity and extensions 13 / 51

Universality Problem:

Lemma:

If there exists a word w that is not accepted by an unambiguous NFA M,
then there exists a word w ′ such that |w ′| ≤ |M| and w ′ is not accepted
by M.

Proof Idea: Let the shortest word be u = x1x2 . . . xn, where n > |M|.

H =

u ε

ε 0

x1 0 1
x1x2 0

... 0
u 0

rank(H) > n > |M|

Ritam Raha Weighted Automata with ambiguity and extensions 14 / 51

Universality Problem:

Lemma:

If there exists a word w that is not accepted by an unambiguous NFA M,
then there exists a word w ′ such that |w ′| ≤ |M| and w ′ is not accepted
by M.

Proof Idea:

Let the shortest word be u = x1x2 . . . xn, where n > |M|.

H =

u ε

ε 0

x1 0 1
x1x2 0

... 0
u 0

rank(H) > n > |M|

Ritam Raha Weighted Automata with ambiguity and extensions 14 / 51

Universality Problem:

Lemma:

If there exists a word w that is not accepted by an unambiguous NFA M,
then there exists a word w ′ such that |w ′| ≤ |M| and w ′ is not accepted
by M.

Proof Idea: Let the shortest word be u = x1x2 . . . xn, where n > |M|.

H =

u ε

ε 0

x1 0 1
x1x2 0

... 0
u 0

rank(H) > n > |M|

Ritam Raha Weighted Automata with ambiguity and extensions 14 / 51

Universality Problem:

Lemma:

If there exists a word w that is not accepted by an unambiguous NFA M,
then there exists a word w ′ such that |w ′| ≤ |M| and w ′ is not accepted
by M.

Proof Idea: Let the shortest word be u = x1x2 . . . xn, where n > |M|.

H =

u ε

ε 0

x1 0 1
x1x2 0

... 0
u 0

rank(H) > n > |M|

Ritam Raha Weighted Automata with ambiguity and extensions 14 / 51

Universality Problem:

Lemma:

If there exists a word w that is not accepted by an unambiguous NFA M,
then there exists a word w ′ such that |w ′| ≤ |M| and w ′ is not accepted
by M.

Proof Idea: Let the shortest word be u = x1x2 . . . xn, where n > |M|.

H =

u ε

ε 0

x1 0 1
x1x2 0

... 0
u 0

rank(H) > n > |M|

Ritam Raha Weighted Automata with ambiguity and extensions 14 / 51

Universality Problem:

Lemma:

If there exists a word w that is not accepted by an unambiguous NFA M,
then there exists a word w ′ such that |w ′| ≤ |M| and w ′ is not accepted
by M.

Proof Idea: Let the shortest word be u = x1x2 . . . xn, where n > |M|.

H =

u ε

ε

0

x1

0 1

x1x2

0

...

0

u

0

rank(H) > n > |M|

Ritam Raha Weighted Automata with ambiguity and extensions 14 / 51

Universality Problem:

Lemma:

If there exists a word w that is not accepted by an unambiguous NFA M,
then there exists a word w ′ such that |w ′| ≤ |M| and w ′ is not accepted
by M.

Proof Idea: Let the shortest word be u = x1x2 . . . xn, where n > |M|.

H =

u ε

ε 0

x1 0

1

x1x2 0
... 0
u 0

rank(H) > n > |M|

Ritam Raha Weighted Automata with ambiguity and extensions 14 / 51

Universality Problem:

Lemma:

If there exists a word w that is not accepted by an unambiguous NFA M,
then there exists a word w ′ such that |w ′| ≤ |M| and w ′ is not accepted
by M.

Proof Idea: Let the shortest word be u = x1x2 . . . xn, where n > |M|.

H =

u ε

ε 0

x1 0 1
x1x2 0

... 0
u 0

rank(H) > n > |M|

Ritam Raha Weighted Automata with ambiguity and extensions 14 / 51

Universality Problem:

Lemma:

If there exists a word w that is not accepted by an unambiguous NFA M,
then there exists a word w ′ such that |w ′| ≤ |M| and w ′ is not accepted
by M.

Proof Idea: Let the shortest word be u = x1x2 . . . xn, where n > |M|.

H =

u ε

ε 0

x1 0 1
x1x2 0

... 0
u 0

rank(H) > n > |M|
Ritam Raha Weighted Automata with ambiguity and extensions 14 / 51

Universality Problem:

Consider M weighted automata on {R ∩ {0, 1},+,×, 0, 1} with all
transition weight 1.

M computes f : Σ∗ → {0, 1}.

M unambiguous ⇒ H ⊂ Hf ⇒ rank(H) < |M|.
Contradiction!

Clearly in co-NP. Can we do better?

Ritam Raha Weighted Automata with ambiguity and extensions 15 / 51

Universality Problem:

Consider M weighted automata on {R ∩ {0, 1},+,×, 0, 1} with all
transition weight 1.

M computes f : Σ∗ → {0, 1}.

M unambiguous ⇒ H ⊂ Hf ⇒ rank(H) < |M|.
Contradiction!

Clearly in co-NP. Can we do better?

Ritam Raha Weighted Automata with ambiguity and extensions 15 / 51

Universality Problem:

Consider M weighted automata on {R ∩ {0, 1},+,×, 0, 1} with all
transition weight 1.

M computes f : Σ∗ → {0, 1}.

M unambiguous

⇒ H ⊂ Hf ⇒ rank(H) < |M|.
Contradiction!

Clearly in co-NP. Can we do better?

Ritam Raha Weighted Automata with ambiguity and extensions 15 / 51

Universality Problem:

Consider M weighted automata on {R ∩ {0, 1},+,×, 0, 1} with all
transition weight 1.

M computes f : Σ∗ → {0, 1}.

M unambiguous ⇒ H ⊂ Hf

⇒ rank(H) < |M|.
Contradiction!

Clearly in co-NP. Can we do better?

Ritam Raha Weighted Automata with ambiguity and extensions 15 / 51

Universality Problem:

Consider M weighted automata on {R ∩ {0, 1},+,×, 0, 1} with all
transition weight 1.

M computes f : Σ∗ → {0, 1}.

M unambiguous ⇒ H ⊂ Hf ⇒ rank(H) < |M|.
Contradiction!

Clearly in co-NP. Can we do better?

Ritam Raha Weighted Automata with ambiguity and extensions 15 / 51

Universality Problem:

Consider M weighted automata on {R ∩ {0, 1},+,×, 0, 1} with all
transition weight 1.

M computes f : Σ∗ → {0, 1}.

M unambiguous ⇒ H ⊂ Hf ⇒ rank(H) < |M|.
Contradiction!

Clearly in co-NP.

Can we do better?

Ritam Raha Weighted Automata with ambiguity and extensions 15 / 51

Universality Problem:

Consider M weighted automata on {R ∩ {0, 1},+,×, 0, 1} with all
transition weight 1.

M computes f : Σ∗ → {0, 1}.

M unambiguous ⇒ H ⊂ Hf ⇒ rank(H) < |M|.
Contradiction!

Clearly in co-NP. Can we do better?

Ritam Raha Weighted Automata with ambiguity and extensions 15 / 51

Universality Problem:

Linear Recurrence System: Each term of a sequence is a linear function
of earlier terms in the sequence.

f (n) = f (n − 1) + g(n − 1)
g(n) = f (n − 1)
f (0) = 0
g(0) = 1

⇔

f (n) = f (n − 1) + f (n − 2)
f (0) = 0
f (1) = 1

Fibonacci

Ritam Raha Weighted Automata with ambiguity and extensions 16 / 51

Universality Problem:

Linear Recurrence System: Each term of a sequence is a linear function
of earlier terms in the sequence.

f (n) = f (n − 1) + g(n − 1)
g(n) = f (n − 1)
f (0) = 0
g(0) = 1

⇔

f (n) = f (n − 1) + f (n − 2)
f (0) = 0
f (1) = 1

Fibonacci

Ritam Raha Weighted Automata with ambiguity and extensions 16 / 51

Universality Problem:
An LRS of order k is a sequence (ul)l∈N such that,

ul = X · Al · Y ,

where, A ∈ Rk×k and X ,Y ∈ Rk .

Fibonacci sequence ⇒ Fl =
[
1 0

]
·
[

1 0
0 1

]
·
[

0
1

]

We will use mainly the following two properties of LRS:

Theorem:

The l-th term of an LRS of order k can be computed in time
O(log(l) · k3).

Two LRS of order at most k are equal if and only if they agree on the
first k terms.

Ritam Raha Weighted Automata with ambiguity and extensions 17 / 51

Universality Problem:
An LRS of order k is a sequence (ul)l∈N such that,

ul = X · Al · Y ,

where, A ∈ Rk×k and X ,Y ∈ Rk .

Fibonacci sequence ⇒ Fl =
[
1 0

]
·
[

1 0
0 1

]
·
[

0
1

]

We will use mainly the following two properties of LRS:

Theorem:

The l-th term of an LRS of order k can be computed in time
O(log(l) · k3).

Two LRS of order at most k are equal if and only if they agree on the
first k terms.

Ritam Raha Weighted Automata with ambiguity and extensions 17 / 51

Universality Problem:
An LRS of order k is a sequence (ul)l∈N such that,

ul = X · Al · Y ,

where, A ∈ Rk×k and X ,Y ∈ Rk .

Fibonacci sequence ⇒ Fl =
[
1 0

]
·
[

1 0
0 1

]
·
[

0
1

]

We will use mainly the following two properties of LRS:

Theorem:

The l-th term of an LRS of order k can be computed in time
O(log(l) · k3).

Two LRS of order at most k are equal if and only if they agree on the
first k terms.

Ritam Raha Weighted Automata with ambiguity and extensions 17 / 51

Universality Problem:

α(l) = No. of l- length words accepted by M.
Acc(l) = No. of l-length accepting paths of M.

Now, clearly Acc(l) = I .∆l .F .
Hence, (Acc(l))l∈N is an LRS of order n.
Now, |Σ|l is an LRS of order 1.

M unambiguous ⇒ Each run corresponds to a word ⇒ α = Acc
Also enough to check for words up to length n ⇒ Polynomial Time

Ritam Raha Weighted Automata with ambiguity and extensions 18 / 51

Universality Problem:

α(l) = No. of l- length words accepted by M.
Acc(l) = No. of l-length accepting paths of M.

Now, clearly Acc(l) = I .∆l .F .

Hence, (Acc(l))l∈N is an LRS of order n.
Now, |Σ|l is an LRS of order 1.

M unambiguous ⇒ Each run corresponds to a word ⇒ α = Acc
Also enough to check for words up to length n ⇒ Polynomial Time

Ritam Raha Weighted Automata with ambiguity and extensions 18 / 51

Universality Problem:

α(l) = No. of l- length words accepted by M.
Acc(l) = No. of l-length accepting paths of M.

Now, clearly Acc(l) = I .∆l .F .
Hence, (Acc(l))l∈N is an LRS of order n.

Now, |Σ|l is an LRS of order 1.

M unambiguous ⇒ Each run corresponds to a word ⇒ α = Acc
Also enough to check for words up to length n ⇒ Polynomial Time

Ritam Raha Weighted Automata with ambiguity and extensions 18 / 51

Universality Problem:

α(l) = No. of l- length words accepted by M.
Acc(l) = No. of l-length accepting paths of M.

Now, clearly Acc(l) = I .∆l .F .
Hence, (Acc(l))l∈N is an LRS of order n.
Now, |Σ|l is an LRS of order 1.

M unambiguous ⇒ Each run corresponds to a word ⇒ α = Acc
Also enough to check for words up to length n ⇒ Polynomial Time

Ritam Raha Weighted Automata with ambiguity and extensions 18 / 51

Universality Problem:

α(l) = No. of l- length words accepted by M.
Acc(l) = No. of l-length accepting paths of M.

Now, clearly Acc(l) = I .∆l .F .
Hence, (Acc(l))l∈N is an LRS of order n.
Now, |Σ|l is an LRS of order 1.

M unambiguous

⇒ Each run corresponds to a word ⇒ α = Acc
Also enough to check for words up to length n ⇒ Polynomial Time

Ritam Raha Weighted Automata with ambiguity and extensions 18 / 51

Universality Problem:

α(l) = No. of l- length words accepted by M.
Acc(l) = No. of l-length accepting paths of M.

Now, clearly Acc(l) = I .∆l .F .
Hence, (Acc(l))l∈N is an LRS of order n.
Now, |Σ|l is an LRS of order 1.

M unambiguous ⇒ Each run corresponds to a word

⇒ α = Acc
Also enough to check for words up to length n ⇒ Polynomial Time

Ritam Raha Weighted Automata with ambiguity and extensions 18 / 51

Universality Problem:

α(l) = No. of l- length words accepted by M.
Acc(l) = No. of l-length accepting paths of M.

Now, clearly Acc(l) = I .∆l .F .
Hence, (Acc(l))l∈N is an LRS of order n.
Now, |Σ|l is an LRS of order 1.

M unambiguous ⇒ Each run corresponds to a word ⇒ α = Acc

Also enough to check for words up to length n ⇒ Polynomial Time

Ritam Raha Weighted Automata with ambiguity and extensions 18 / 51

Universality Problem:

α(l) = No. of l- length words accepted by M.
Acc(l) = No. of l-length accepting paths of M.

Now, clearly Acc(l) = I .∆l .F .
Hence, (Acc(l))l∈N is an LRS of order n.
Now, |Σ|l is an LRS of order 1.

M unambiguous ⇒ Each run corresponds to a word ⇒ α = Acc
Also enough to check for words up to length n

⇒ Polynomial Time

Ritam Raha Weighted Automata with ambiguity and extensions 18 / 51

Universality Problem:

α(l) = No. of l- length words accepted by M.
Acc(l) = No. of l-length accepting paths of M.

Now, clearly Acc(l) = I .∆l .F .
Hence, (Acc(l))l∈N is an LRS of order n.
Now, |Σ|l is an LRS of order 1.

M unambiguous ⇒ Each run corresponds to a word ⇒ α = Acc
Also enough to check for words up to length n ⇒ Polynomial Time

Ritam Raha Weighted Automata with ambiguity and extensions 18 / 51

Universality Problem:

What happens with finite ambiguity?

Same approach fails!! The number of l-length accepted words does not
correspond to l-length accepting paths any more.

Given A, a k- ambiguous automaton(k-fixed). Construct Ap as follows:
Consider a linear order < on states,
States: Q ′ = Q ∪Q2 ∪ · · · ∪Qp separated with at most (p− 1) delimiters,
Transitions: if for some state q ∈ Q, q

a−→ q1 & q
a−→ q2 ∈ δ and q1 < q2,

then q
a−→ (q1|q2) ∈ δ′,

Final state: Final states of Ap will be (qf |qf | · · · |qf︸ ︷︷ ︸
p times

)

The idea is, we use the powerset construction capped to sets of size at
most p with a linear ordering on states.

Ritam Raha Weighted Automata with ambiguity and extensions 19 / 51

Universality Problem:

What happens with finite ambiguity?

Same approach fails!! The number of l-length accepted words does not
correspond to l-length accepting paths any more.

Given A, a k- ambiguous automaton(k-fixed). Construct Ap as follows:
Consider a linear order < on states,
States: Q ′ = Q ∪Q2 ∪ · · · ∪Qp separated with at most (p− 1) delimiters,
Transitions: if for some state q ∈ Q, q

a−→ q1 & q
a−→ q2 ∈ δ and q1 < q2,

then q
a−→ (q1|q2) ∈ δ′,

Final state: Final states of Ap will be (qf |qf | · · · |qf︸ ︷︷ ︸
p times

)

The idea is, we use the powerset construction capped to sets of size at
most p with a linear ordering on states.

Ritam Raha Weighted Automata with ambiguity and extensions 19 / 51

Universality Problem:

What happens with finite ambiguity?

Same approach fails!! The number of l-length accepted words does not
correspond to l-length accepting paths any more.

Given A, a k- ambiguous automaton(k-fixed). Construct Ap as follows:

Consider a linear order < on states,
States: Q ′ = Q ∪Q2 ∪ · · · ∪Qp separated with at most (p− 1) delimiters,
Transitions: if for some state q ∈ Q, q

a−→ q1 & q
a−→ q2 ∈ δ and q1 < q2,

then q
a−→ (q1|q2) ∈ δ′,

Final state: Final states of Ap will be (qf |qf | · · · |qf︸ ︷︷ ︸
p times

)

The idea is, we use the powerset construction capped to sets of size at
most p with a linear ordering on states.

Ritam Raha Weighted Automata with ambiguity and extensions 19 / 51

Universality Problem:

What happens with finite ambiguity?

Same approach fails!! The number of l-length accepted words does not
correspond to l-length accepting paths any more.

Given A, a k- ambiguous automaton(k-fixed). Construct Ap as follows:
Consider a linear order < on states,
States: Q ′ = Q ∪Q2 ∪ · · · ∪Qp separated with at most (p− 1) delimiters,
Transitions: if for some state q ∈ Q, q

a−→ q1 & q
a−→ q2 ∈ δ and q1 < q2,

then q
a−→ (q1|q2) ∈ δ′,

Final state: Final states of Ap will be (qf |qf | · · · |qf︸ ︷︷ ︸
p times

)

The idea is, we use the powerset construction capped to sets of size at
most p with a linear ordering on states.

Ritam Raha Weighted Automata with ambiguity and extensions 19 / 51

Universality Problem:

What happens with finite ambiguity?

Same approach fails!! The number of l-length accepted words does not
correspond to l-length accepting paths any more.

Given A, a k- ambiguous automaton(k-fixed). Construct Ap as follows:
Consider a linear order < on states,
States: Q ′ = Q ∪Q2 ∪ · · · ∪Qp separated with at most (p− 1) delimiters,
Transitions: if for some state q ∈ Q, q

a−→ q1 & q
a−→ q2 ∈ δ and q1 < q2,

then q
a−→ (q1|q2) ∈ δ′,

Final state: Final states of Ap will be (qf |qf | · · · |qf︸ ︷︷ ︸
p times

)

The idea is, we use the powerset construction capped to sets of size at
most p with a linear ordering on states.

Ritam Raha Weighted Automata with ambiguity and extensions 19 / 51

Universality Problem:

q0

q1

q2

a

a

q0 q1|q2
a

Ap accepts all words that have at least p accepting runs on A.
Also given the linear order on states, Ak is unambiguous, where k is the
highest ambiguity.

Ritam Raha Weighted Automata with ambiguity and extensions 20 / 51

Universality Problem:

q0

q1

q2

a

a

q0 q1|q2
a

Ap accepts all words that have at least p accepting runs on A.
Also given the linear order on states, Ak is unambiguous, where k is the
highest ambiguity.

Ritam Raha Weighted Automata with ambiguity and extensions 20 / 51

Universality Problem:

q0

q1

q2

a

a

q0 q1|q2
a

Ap accepts all words that have at least p accepting runs on A.

Also given the linear order on states, Ak is unambiguous, where k is the
highest ambiguity.

Ritam Raha Weighted Automata with ambiguity and extensions 20 / 51

Universality Problem:

q0

q1

q2

a

a

q0 q1|q2
a

Ap accepts all words that have at least p accepting runs on A.
Also given the linear order on states, Ak is unambiguous, where k is the
highest ambiguity.

Ritam Raha Weighted Automata with ambiguity and extensions 20 / 51

Universality Problem:

α(l) = the number of words of length l accepted by A,
αp(l) = the number of words of length l having exactly p accepting runs

over A.

⇒ α(l) =
∑k

p=1 αp(l)

Note that:

each word having exactly p runs induce one run of Ap

each word having exactly p + 1 runs induce p + 1 runs of Ap,
obtained by choosing p runs among p + 1.

more generally, each word having exactly j runs induce
(j
p

)
runs of

Ap, obtained by choosing p runs among j .

Accp(l) = No. of l-length paths in Ap =
∑k

j=p

(j
p

)
αj(l).

Ritam Raha Weighted Automata with ambiguity and extensions 21 / 51

Universality Problem:

α(l) = the number of words of length l accepted by A,
αp(l) = the number of words of length l having exactly p accepting runs

over A. ⇒ α(l) =
∑k

p=1 αp(l)

Note that:

each word having exactly p runs induce one run of Ap

each word having exactly p + 1 runs induce p + 1 runs of Ap,
obtained by choosing p runs among p + 1.

more generally, each word having exactly j runs induce
(j
p

)
runs of

Ap, obtained by choosing p runs among j .

Accp(l) = No. of l-length paths in Ap =
∑k

j=p

(j
p

)
αj(l).

Ritam Raha Weighted Automata with ambiguity and extensions 21 / 51

Universality Problem:

α(l) = the number of words of length l accepted by A,
αp(l) = the number of words of length l having exactly p accepting runs

over A. ⇒ α(l) =
∑k

p=1 αp(l)

Note that:

each word having exactly p runs induce one run of Ap

each word having exactly p + 1 runs induce p + 1 runs of Ap,
obtained by choosing p runs among p + 1.

more generally, each word having exactly j runs induce
(j
p

)
runs of

Ap, obtained by choosing p runs among j .

Accp(l) = No. of l-length paths in Ap =
∑k

j=p

(j
p

)
αj(l).

Ritam Raha Weighted Automata with ambiguity and extensions 21 / 51

Universality Problem:

α(l) = the number of words of length l accepted by A,
αp(l) = the number of words of length l having exactly p accepting runs

over A. ⇒ α(l) =
∑k

p=1 αp(l)

Note that:

each word having exactly p runs induce one run of Ap

each word having exactly p + 1 runs induce p + 1 runs of Ap,
obtained by choosing p runs among p + 1.

more generally, each word having exactly j runs induce
(j
p

)
runs of

Ap, obtained by choosing p runs among j .

Accp(l) = No. of l-length paths in Ap =
∑k

j=p

(j
p

)
αj(l).

Ritam Raha Weighted Automata with ambiguity and extensions 21 / 51

Universality Problem:

α(l) = the number of words of length l accepted by A,
αp(l) = the number of words of length l having exactly p accepting runs

over A. ⇒ α(l) =
∑k

p=1 αp(l)

Note that:

each word having exactly p runs induce one run of Ap

each word having exactly p + 1 runs induce p + 1 runs of Ap,
obtained by choosing p runs among p + 1.

more generally, each word having exactly j runs induce
(j
p

)
runs of

Ap, obtained by choosing p runs among j .

Accp(l) = No. of l-length paths in Ap =
∑k

j=p

(j
p

)
αj(l).

Ritam Raha Weighted Automata with ambiguity and extensions 21 / 51

Universality Problem:

α(l) = the number of words of length l accepted by A,
αp(l) = the number of words of length l having exactly p accepting runs

over A. ⇒ α(l) =
∑k

p=1 αp(l)

Note that:

each word having exactly p runs induce one run of Ap

each word having exactly p + 1 runs induce p + 1 runs of Ap,
obtained by choosing p runs among p + 1.

more generally, each word having exactly j runs induce
(j
p

)
runs of

Ap, obtained by choosing p runs among j .

Accp(l) = No. of l-length paths in Ap

=
∑k

j=p

(j
p

)
αj(l).

Ritam Raha Weighted Automata with ambiguity and extensions 21 / 51

Universality Problem:

α(l) = the number of words of length l accepted by A,
αp(l) = the number of words of length l having exactly p accepting runs

over A. ⇒ α(l) =
∑k

p=1 αp(l)

Note that:

each word having exactly p runs induce one run of Ap

each word having exactly p + 1 runs induce p + 1 runs of Ap,
obtained by choosing p runs among p + 1.

more generally, each word having exactly j runs induce
(j
p

)
runs of

Ap, obtained by choosing p runs among j .

Accp(l) = No. of l-length paths in Ap =
∑k

j=p

(j
p

)
αj(l).

Ritam Raha Weighted Automata with ambiguity and extensions 21 / 51

Universality Problem:

Consider Acc = (Acc1,Acc2, . . .Acck) and
α = (α1, α2, . . . αk).

Acc = M · α, where M is upper-triangular and
invertible.
α = M−1 · Acc

For each p,
Accp is LRS of order nO(k) ⇒ αp is LRS of order nO(k) ⇒
Polynomial Time

Ritam Raha Weighted Automata with ambiguity and extensions 22 / 51

Universality Problem:

Consider Acc = (Acc1,Acc2, . . .Acck) and
α = (α1, α2, . . . αk).Acc = M · α, where M is upper-triangular and
invertible.

α = M−1 · Acc

For each p,
Accp is LRS of order nO(k) ⇒ αp is LRS of order nO(k) ⇒
Polynomial Time

Ritam Raha Weighted Automata with ambiguity and extensions 22 / 51

Universality Problem:

Consider Acc = (Acc1,Acc2, . . .Acck) and
α = (α1, α2, . . . αk).Acc = M · α, where M is upper-triangular and
invertible.
α = M−1 · Acc

For each p,
Accp is LRS of order nO(k) ⇒ αp is LRS of order nO(k) ⇒
Polynomial Time

Ritam Raha Weighted Automata with ambiguity and extensions 22 / 51

Universality Problem:

Consider Acc = (Acc1,Acc2, . . .Acck) and
α = (α1, α2, . . . αk).Acc = M · α, where M is upper-triangular and
invertible.
α = M−1 · Acc

For each p,
Accp is LRS of order nO(k)

⇒ αp is LRS of order nO(k) ⇒
Polynomial Time

Ritam Raha Weighted Automata with ambiguity and extensions 22 / 51

Universality Problem:

Consider Acc = (Acc1,Acc2, . . .Acck) and
α = (α1, α2, . . . αk).Acc = M · α, where M is upper-triangular and
invertible.
α = M−1 · Acc

For each p,
Accp is LRS of order nO(k) ⇒ αp is LRS of order nO(k)

⇒
Polynomial Time

Ritam Raha Weighted Automata with ambiguity and extensions 22 / 51

Universality Problem:

Consider Acc = (Acc1,Acc2, . . .Acck) and
α = (α1, α2, . . . αk).Acc = M · α, where M is upper-triangular and
invertible.
α = M−1 · Acc

For each p,
Accp is LRS of order nO(k) ⇒ αp is LRS of order nO(k) ⇒
Polynomial Time

Ritam Raha Weighted Automata with ambiguity and extensions 22 / 51

Outline

1 Weighted Automata

2 Hankel Matrix

3 Ambiguity

4 Universality with Ambiguity

5 Introduction to Weighted Context-Free Grammar

6 Learning WCFG

7 Properties of WCFG

Ritam Raha Weighted Automata with ambiguity and extensions 23 / 51

WCFG - nonlinear extension:

Automata

Weighted
Automata

Context Free
Grammars

Weighted
Context Free
Grammars

weights from
some semiring
S

� transitions,
⊕ runs

weights from
some semiring
S

� rules, ⊕
derivation trees

Ritam Raha Weighted Automata with ambiguity and extensions 24 / 51

WCFG - nonlinear extension:

Automata

Weighted
Automata

Context Free
Grammars

Weighted
Context Free
Grammars

weights from
some semiring
S

� transitions,
⊕ runs

weights from
some semiring
S

� rules, ⊕
derivation trees

Ritam Raha Weighted Automata with ambiguity and extensions 24 / 51

WCFG - nonlinear extension:

Automata

Weighted
Automata

Context Free
Grammars

Weighted
Context Free
Grammars

weights from
some semiring
S

� transitions,
⊕ runs

weights from
some semiring
S

� rules, ⊕
derivation trees

Ritam Raha Weighted Automata with ambiguity and extensions 24 / 51

WCFG - nonlinear extension:

Automata

Weighted
Automata

Context Free
Grammars

Weighted
Context Free
Grammars

weights from
some semiring
S

� transitions,
⊕ runs

weights from
some semiring
S

� rules, ⊕
derivation trees

Ritam Raha Weighted Automata with ambiguity and extensions 24 / 51

WCFG - nonlinear extension:

Automata

Weighted
Automata

Context Free
Grammars

Weighted
Context Free
Grammars

weights from
some semiring
S

� transitions,
⊕ runs

weights from
some semiring
S

� rules, ⊕
derivation trees

Ritam Raha Weighted Automata with ambiguity and extensions 24 / 51

WCFG - nonlinear extension

Weighted Context Free Grammar:

Always in Greibach Normal Form

left most derivation tree

S → aAB 1
A→ b 1 |bA 2
B → b 1 |bB 3

Ritam Raha Weighted Automata with ambiguity and extensions 25 / 51

WCFG - nonlinear extension

Weighted Context Free Grammar:

Always in Greibach Normal Form

left most derivation tree

S → aAB 1
A→ b 1 |bA 2
B → b 1 |bB 3

Ritam Raha Weighted Automata with ambiguity and extensions 25 / 51

WCFG - nonlinear extension

Weighted Context Free Grammar:

Always in Greibach Normal Form

left most derivation tree

S → aAB 1
A→ b 1 |bA 2
B → b 1 |bB 3

Ritam Raha Weighted Automata with ambiguity and extensions 25 / 51

WCFG - nonlinear extension:
S → aAB 1
A→ b 1 |bA 2
B → b 1 |bB 3

Consider abbb:

S

a A

b

B

b B

b

S

a A

b A

b

B

b

Output = 1.1.3.1 +1.2.1.1 =5
Ritam Raha Weighted Automata with ambiguity and extensions 26 / 51

WCFG - nonlinear extension:

Automata

Weighted
Automata

Context Free
Grammars

Weighted
Context Free
Grammars

extension

Parikh’s Theo-
rem!!

Ritam Raha Weighted Automata with ambiguity and extensions 27 / 51

Parikh’s Theorem:

Parikh Map : Pk(w)
def
= (#aw ,#bw , . . .)

Parikh’s Theorem

For every context-free grammar G , there is a regular language R such that
Pk(L(G)) = Pk(L(R)).

Corollary: For every context-free grammar G on unary alphabet, there is a
regular language R such that L(G) = L(R).

Ritam Raha Weighted Automata with ambiguity and extensions 28 / 51

Parikh’s Theorem:

Parikh Map : Pk(w)
def
= (#aw ,#bw , . . .)

Parikh’s Theorem

For every context-free grammar G , there is a regular language R such that
Pk(L(G)) = Pk(L(R)).

Corollary: For every context-free grammar G on unary alphabet, there is a
regular language R such that L(G) = L(R).

Ritam Raha Weighted Automata with ambiguity and extensions 28 / 51

WCFG - nonlinear extension:

Automata

Weighted
Automata

Context Free
Grammars

Weighted
Context Free
Grammars

extension X

In general

Ritam Raha Weighted Automata with ambiguity and extensions 29 / 51

WCFG - nonlinear extension:

Automata

Weighted
Automata

Context Free
Grammars

Weighted
Context Free
Grammars

extension 7

On one letter
alphabet

Ritam Raha Weighted Automata with ambiguity and extensions 29 / 51

WCFG - nonlinear extension:

Automata

Weighted
Automata

Context Free
Grammars

Weighted
Context Free
Grammars

extension

extension ?

Ritam Raha Weighted Automata with ambiguity and extensions 29 / 51

Parikh’s Theorem for WCFG :

Parikh image for a WCFG (G ,W) :

PkJGKW (u)
def
=

⊕
u′∈[u]Pk

JGKW (u′)

Weighted Parikh’s Theorem [BGV]

For every weighted context-free grammar (G,W) over an idempotent,
commutative semiring, Parikh’s theorem holds.

Note: Idempotent is really necessary!!

Ritam Raha Weighted Automata with ambiguity and extensions 30 / 51

Parikh’s Theorem for WCFG :

Parikh image for a WCFG (G ,W) :

PkJGKW (u)
def
=

⊕
u′∈[u]Pk

JGKW (u′)

Weighted Parikh’s Theorem [BGV]

For every weighted context-free grammar (G,W) over an idempotent,
commutative semiring, Parikh’s theorem holds.

Note: Idempotent is really necessary!!

Ritam Raha Weighted Automata with ambiguity and extensions 30 / 51

Parikh’s Theorem for WCFG :

Parikh image for a WCFG (G ,W) :

PkJGKW (u)
def
=

⊕
u′∈[u]Pk

JGKW (u′)

Weighted Parikh’s Theorem [BGV]

For every weighted context-free grammar (G,W) over an idempotent,
commutative semiring, Parikh’s theorem holds.

Note: Idempotent is really necessary!!

Ritam Raha Weighted Automata with ambiguity and extensions 30 / 51

WCFG - nonlinear extension:

Automata

Weighted
Automata

Context Free
Grammars

Weighted
Context Free
Grammars

extension 7

On one letter
alphabet

Ritam Raha Weighted Automata with ambiguity and extensions 31 / 51

WCFG - nonlinear extension:

Automata

Weighted
Automata

Context Free
Grammars

Weighted
Context Free
Grammars

extension 7

On one letter
alphabet

extension X

On one let-
ter alpha-
bet on non-
idempotent
semiring

Ritam Raha Weighted Automata with ambiguity and extensions 31 / 51

WCFG -nonlinear extension:

Consider the grammar:
S → aSS 1 |a 1

This grammar only produces words of the form a2k+1.

The number of derivation trees of the word a2k+1 is Ck , k-th Catalan
Number.⇒ weight of (a2k+1) = Ck .

It can be shown that generating function of Catalan number is not rational.
⇒ There is no equivalent WFA accepting the same weighted-language.

Now, you can really believe, it is an extension!!

Ritam Raha Weighted Automata with ambiguity and extensions 32 / 51

WCFG -nonlinear extension:

Consider the grammar:
S → aSS 1 |a 1

This grammar only produces words of the form a2k+1.

The number of derivation trees of the word a2k+1 is Ck , k-th Catalan
Number.⇒ weight of (a2k+1) = Ck .

It can be shown that generating function of Catalan number is not rational.
⇒ There is no equivalent WFA accepting the same weighted-language.

Now, you can really believe, it is an extension!!

Ritam Raha Weighted Automata with ambiguity and extensions 32 / 51

WCFG -nonlinear extension:

Consider the grammar:
S → aSS 1 |a 1

This grammar only produces words of the form a2k+1.

The number of derivation trees of the word a2k+1 is Ck , k-th Catalan
Number.

⇒ weight of (a2k+1) = Ck .

It can be shown that generating function of Catalan number is not rational.
⇒ There is no equivalent WFA accepting the same weighted-language.

Now, you can really believe, it is an extension!!

Ritam Raha Weighted Automata with ambiguity and extensions 32 / 51

WCFG -nonlinear extension:

Consider the grammar:
S → aSS 1 |a 1

This grammar only produces words of the form a2k+1.

The number of derivation trees of the word a2k+1 is Ck , k-th Catalan
Number.⇒ weight of (a2k+1) = Ck .

It can be shown that generating function of Catalan number is not rational.
⇒ There is no equivalent WFA accepting the same weighted-language.

Now, you can really believe, it is an extension!!

Ritam Raha Weighted Automata with ambiguity and extensions 32 / 51

WCFG -nonlinear extension:

Consider the grammar:
S → aSS 1 |a 1

This grammar only produces words of the form a2k+1.

The number of derivation trees of the word a2k+1 is Ck , k-th Catalan
Number.⇒ weight of (a2k+1) = Ck .

It can be shown that generating function of Catalan number is not rational.

⇒ There is no equivalent WFA accepting the same weighted-language.

Now, you can really believe, it is an extension!!

Ritam Raha Weighted Automata with ambiguity and extensions 32 / 51

WCFG -nonlinear extension:

Consider the grammar:
S → aSS 1 |a 1

This grammar only produces words of the form a2k+1.

The number of derivation trees of the word a2k+1 is Ck , k-th Catalan
Number.⇒ weight of (a2k+1) = Ck .

It can be shown that generating function of Catalan number is not rational.
⇒ There is no equivalent WFA accepting the same weighted-language.

Now, you can really believe, it is an extension!!

Ritam Raha Weighted Automata with ambiguity and extensions 32 / 51

WCFG -nonlinear extension:

Consider the grammar:
S → aSS 1 |a 1

This grammar only produces words of the form a2k+1.

The number of derivation trees of the word a2k+1 is Ck , k-th Catalan
Number.⇒ weight of (a2k+1) = Ck .

It can be shown that generating function of Catalan number is not rational.
⇒ There is no equivalent WFA accepting the same weighted-language.

Now, you can really believe, it is an extension!!

Ritam Raha Weighted Automata with ambiguity and extensions 32 / 51

Outline

1 Weighted Automata

2 Hankel Matrix

3 Ambiguity

4 Universality with Ambiguity

5 Introduction to Weighted Context-Free Grammar

6 Learning WCFG

7 Properties of WCFG

Ritam Raha Weighted Automata with ambiguity and extensions 33 / 51

Learning WCFG:

We know that the Hankel matrix for functions f : Σ∗ → R can be used to
characterise functions recognised by weighted automata.

Can we do
something similar for WCFG?

The same kind of Hankel Matrix does not contain enough information, i.e.
it can have infinite rank though recognised by a WCFG.

Bailly, Carreras, Luque, and Quattoni presented a similar Hankel-like
theorem in their paper.

But, the idea is WRONG!!

Ritam Raha Weighted Automata with ambiguity and extensions 34 / 51

Learning WCFG:

We know that the Hankel matrix for functions f : Σ∗ → R can be used to
characterise functions recognised by weighted automata.Can we do
something similar for WCFG?

The same kind of Hankel Matrix does not contain enough information, i.e.
it can have infinite rank though recognised by a WCFG.

Bailly, Carreras, Luque, and Quattoni presented a similar Hankel-like
theorem in their paper.

But, the idea is WRONG!!

Ritam Raha Weighted Automata with ambiguity and extensions 34 / 51

Learning WCFG:

We know that the Hankel matrix for functions f : Σ∗ → R can be used to
characterise functions recognised by weighted automata.Can we do
something similar for WCFG?

The same kind of Hankel Matrix does not contain enough information, i.e.
it can have infinite rank though recognised by a WCFG.

Bailly, Carreras, Luque, and Quattoni presented a similar Hankel-like
theorem in their paper.

But, the idea is WRONG!!

Ritam Raha Weighted Automata with ambiguity and extensions 34 / 51

Learning WCFG:

We know that the Hankel matrix for functions f : Σ∗ → R can be used to
characterise functions recognised by weighted automata.Can we do
something similar for WCFG?

The same kind of Hankel Matrix does not contain enough information, i.e.
it can have infinite rank though recognised by a WCFG.

Bailly, Carreras, Luque, and Quattoni presented a similar Hankel-like
theorem in their paper.

But, the idea is WRONG!!

Ritam Raha Weighted Automata with ambiguity and extensions 34 / 51

Learning WCFG:

We know that the Hankel matrix for functions f : Σ∗ → R can be used to
characterise functions recognised by weighted automata.Can we do
something similar for WCFG?

The same kind of Hankel Matrix does not contain enough information, i.e.
it can have infinite rank though recognised by a WCFG.

Bailly, Carreras, Luque, and Quattoni presented a similar Hankel-like
theorem in their paper.

But, the idea is WRONG!!

Ritam Raha Weighted Automata with ambiguity and extensions 34 / 51

Learning WCFG:

The idea was following:

We consider functions f : O × I → R, where O ∈ Σ∗ × Σ∗ and I ∈ Σ+.
f (〈x ; z〉, y) = JGKW (xyz).

To compute this function, they defined two functions:
Inside Function: βG (i ⇒∗ y)[Intuitively, denotes the weight of deriving y
from a non-terminal i]
Outside Function: αG (x ; i ; z)[Intuitively denotes the weight of derivation
of the context〈x ; z〉]

Ritam Raha Weighted Automata with ambiguity and extensions 35 / 51

Learning WCFG:

The idea was following:
We consider functions f : O × I → R, where O ∈ Σ∗ × Σ∗ and I ∈ Σ+.
f (〈x ; z〉, y) = JGKW (xyz).

To compute this function, they defined two functions:
Inside Function: βG (i ⇒∗ y)[Intuitively, denotes the weight of deriving y
from a non-terminal i]
Outside Function: αG (x ; i ; z)[Intuitively denotes the weight of derivation
of the context〈x ; z〉]

Ritam Raha Weighted Automata with ambiguity and extensions 35 / 51

Learning WCFG:

The idea was following:
We consider functions f : O × I → R, where O ∈ Σ∗ × Σ∗ and I ∈ Σ+.
f (〈x ; z〉, y) = JGKW (xyz).

To compute this function, they defined two functions:
Inside Function: βG (i ⇒∗ y)[Intuitively, denotes the weight of deriving y
from a non-terminal i]
Outside Function: αG (x ; i ; z)[Intuitively denotes the weight of derivation
of the context〈x ; z〉]

Ritam Raha Weighted Automata with ambiguity and extensions 35 / 51

Learning WCFG:

Hence, JGKW (xyz) =
∑

i∈V αG (x ; i ; z)βG (i ⇒∗ y).

Using, this idea they constructed the hankel matrix for WCFG like the
following:

HO×I =

y

.

.
〈x ; z〉 . . JGKW (xyz)

This matrix has finite rank. Surprisingly, their following theorem says, this
is enough information to learn the WCFG.

Ritam Raha Weighted Automata with ambiguity and extensions 36 / 51

Learning WCFG:

Hence, JGKW (xyz) =
∑

i∈V αG (x ; i ; z)βG (i ⇒∗ y).

Using, this idea they constructed the hankel matrix for WCFG like the
following:

HO×I =

y

.

.
〈x ; z〉 . . JGKW (xyz)

This matrix has finite rank. Surprisingly, their following theorem says, this
is enough information to learn the WCFG.

Ritam Raha Weighted Automata with ambiguity and extensions 36 / 51

Learning WCFG:

Hence, JGKW (xyz) =
∑

i∈V αG (x ; i ; z)βG (i ⇒∗ y).

Using, this idea they constructed the hankel matrix for WCFG like the
following:

HO×I =

y

.

.
〈x ; z〉 . . JGKW (xyz)

This matrix has finite rank. Surprisingly, their following theorem says, this
is enough information to learn the WCFG.

Ritam Raha Weighted Automata with ambiguity and extensions 36 / 51

Learning WCFG:

Hence, JGKW (xyz) =
∑

i∈V αG (x ; i ; z)βG (i ⇒∗ y).

Using, this idea they constructed the hankel matrix for WCFG like the
following:

HO×I =

y

.

.
〈x ; z〉 . . JGKW (xyz)

This matrix has finite rank. Surprisingly, their following theorem says, this
is enough information to learn the WCFG.

Ritam Raha Weighted Automata with ambiguity and extensions 36 / 51

Learning WCFG

Theorem [BCLQ]

Given a complete basis for the Hankel Matrix defined above for a function
f recognized by a WCFG, we can effectively construct the WCFG from
that basis.

But this idea is WRONG!!!

We now give a counter-example.

Ritam Raha Weighted Automata with ambiguity and extensions 37 / 51

Learning WCFG

Theorem [BCLQ]

Given a complete basis for the Hankel Matrix defined above for a function
f recognized by a WCFG, we can effectively construct the WCFG from
that basis.

But this idea is WRONG!!!

We now give a counter-example.

Ritam Raha Weighted Automata with ambiguity and extensions 37 / 51

Learning WCFG

Theorem [BCLQ]

Given a complete basis for the Hankel Matrix defined above for a function
f recognized by a WCFG, we can effectively construct the WCFG from
that basis.

But this idea is WRONG!!!

We now give a counter-example.

Ritam Raha Weighted Automata with ambiguity and extensions 37 / 51

Learning WCFG:

Precisely, the wrong claim is that for any f : (Σ∗ × Σ∗)× Σ+ → R, one
can construct a weighted context-free grammar computing f with the
number of non-terminals being the rank of Hf .

We start from the function f : Tree(Σ)→ R assigning 1 to the following
two trees, and 0 to any other tree.

S

AB

A

a

B

b

A

a

S

A

a

CA

C

c

A

a

Ritam Raha Weighted Automata with ambiguity and extensions 38 / 51

Learning WCFG:

Precisely, the wrong claim is that for any f : (Σ∗ × Σ∗)× Σ+ → R, one
can construct a weighted context-free grammar computing f with the
number of non-terminals being the rank of Hf .

We start from the function f : Tree(Σ)→ R assigning 1 to the following
two trees, and 0 to any other tree.

S

AB

A

a

B

b

A

a

S

A

a

CA

C

c

A

a

Ritam Raha Weighted Automata with ambiguity and extensions 38 / 51

Learning WCFG

Clearly, there exists a WCFG with 6 non-terminals defining the function f .

But if we construct the Hankel Matrix for the function f : O × I → R for
this, we will see it has rank 5.

But, no WCFG with 5 non-terminals accept this language.

Ritam Raha Weighted Automata with ambiguity and extensions 39 / 51

Learning WCFG

Clearly, there exists a WCFG with 6 non-terminals defining the function f .

But if we construct the Hankel Matrix for the function f : O × I → R for
this, we will see it has rank 5.

But, no WCFG with 5 non-terminals accept this language.

Ritam Raha Weighted Automata with ambiguity and extensions 39 / 51

Learning WCFG

Clearly, there exists a WCFG with 6 non-terminals defining the function f .

But if we construct the Hankel Matrix for the function f : O × I → R for
this, we will see it has rank 5.

But, no WCFG with 5 non-terminals accept this language.

Ritam Raha Weighted Automata with ambiguity and extensions 39 / 51

Learning WCFG:

What went wrong??

There exists a natural extension for Fliess’ theorem for Weighted tree
automata by Bozapalidis and Louscou-Bozapalidou([BL83]).
Consider a function f : Tree(Σ)→ R. A context is a tree over the
signature Σ ∪2(0) with the restriction that 2 occurs only once.

A context c and a tree t, yield a tree c[t], where we substitute the leaf 2
in c by t.

Naturally the Hankel Matrix Hf ∈ RContext(Σ)×Tree(Σ) such that
Hf (c , t) = f (c[t]) can be defined and the Fliess’ theorem can be extended
over this.

Ritam Raha Weighted Automata with ambiguity and extensions 40 / 51

Learning WCFG:

What went wrong??

There exists a natural extension for Fliess’ theorem for Weighted tree
automata by Bozapalidis and Louscou-Bozapalidou([BL83]).

Consider a function f : Tree(Σ)→ R. A context is a tree over the
signature Σ ∪2(0) with the restriction that 2 occurs only once.

A context c and a tree t, yield a tree c[t], where we substitute the leaf 2
in c by t.

Naturally the Hankel Matrix Hf ∈ RContext(Σ)×Tree(Σ) such that
Hf (c , t) = f (c[t]) can be defined and the Fliess’ theorem can be extended
over this.

Ritam Raha Weighted Automata with ambiguity and extensions 40 / 51

Learning WCFG:

What went wrong??

There exists a natural extension for Fliess’ theorem for Weighted tree
automata by Bozapalidis and Louscou-Bozapalidou([BL83]).
Consider a function f : Tree(Σ)→ R. A context is a tree over the
signature Σ ∪2(0) with the restriction that 2 occurs only once.

A context c and a tree t, yield a tree c[t], where we substitute the leaf 2
in c by t.

Naturally the Hankel Matrix Hf ∈ RContext(Σ)×Tree(Σ) such that
Hf (c , t) = f (c[t]) can be defined and the Fliess’ theorem can be extended
over this.

Ritam Raha Weighted Automata with ambiguity and extensions 40 / 51

Learning WCFG:

What went wrong??

There exists a natural extension for Fliess’ theorem for Weighted tree
automata by Bozapalidis and Louscou-Bozapalidou([BL83]).
Consider a function f : Tree(Σ)→ R. A context is a tree over the
signature Σ ∪2(0) with the restriction that 2 occurs only once.

A context c and a tree t, yield a tree c[t], where we substitute the leaf 2
in c by t.

Naturally the Hankel Matrix Hf ∈ RContext(Σ)×Tree(Σ) such that
Hf (c , t) = f (c[t]) can be defined and the Fliess’ theorem can be extended
over this.

Ritam Raha Weighted Automata with ambiguity and extensions 40 / 51

Learning WCFG
Now, consider the previous language. The tree hankel matrix will correctly
have rank 6 for the function f , but the WCFG hankel matrix will have rank
5.

Why?

This is beacuse the row for the context 〈a; a〉 has value 1 for b and c
according to Baily et al’s Hankel Matrix.
But, for the tree hankel matrix it will have two seperate contexts:

a 2

a a

2 a

Ritam Raha Weighted Automata with ambiguity and extensions 41 / 51

Learning WCFG
Now, consider the previous language. The tree hankel matrix will correctly
have rank 6 for the function f , but the WCFG hankel matrix will have rank
5.Why?

This is beacuse the row for the context 〈a; a〉 has value 1 for b and c
according to Baily et al’s Hankel Matrix.
But, for the tree hankel matrix it will have two seperate contexts:

a 2

a a

2 a

Ritam Raha Weighted Automata with ambiguity and extensions 41 / 51

Learning WCFG
Now, consider the previous language. The tree hankel matrix will correctly
have rank 6 for the function f , but the WCFG hankel matrix will have rank
5.Why?

This is beacuse the row for the context 〈a; a〉 has value 1 for b and c
according to Baily et al’s Hankel Matrix.

But, for the tree hankel matrix it will have two seperate contexts:

a 2

a a

2 a

Ritam Raha Weighted Automata with ambiguity and extensions 41 / 51

Learning WCFG
Now, consider the previous language. The tree hankel matrix will correctly
have rank 6 for the function f , but the WCFG hankel matrix will have rank
5.Why?

This is beacuse the row for the context 〈a; a〉 has value 1 for b and c
according to Baily et al’s Hankel Matrix.
But, for the tree hankel matrix it will have two seperate contexts:

a 2

a a

2 a

Ritam Raha Weighted Automata with ambiguity and extensions 41 / 51

Learning WCFG
Now, consider the previous language. The tree hankel matrix will correctly
have rank 6 for the function f , but the WCFG hankel matrix will have rank
5.Why?

This is beacuse the row for the context 〈a; a〉 has value 1 for b and c
according to Baily et al’s Hankel Matrix.
But, for the tree hankel matrix it will have two seperate contexts:

a 2

a a

2 a
Ritam Raha Weighted Automata with ambiguity and extensions 41 / 51

Outline

1 Weighted Automata

2 Hankel Matrix

3 Ambiguity

4 Universality with Ambiguity

5 Introduction to Weighted Context-Free Grammar

6 Learning WCFG

7 Properties of WCFG

Ritam Raha Weighted Automata with ambiguity and extensions 42 / 51

WA & LRS:

Let’s come back to LRS again:

Linear Recurrence System: Each term of a sequence is a linear function
of earlier terms in the sequence.

f (n) = f (n − 1) + g(n − 1)
g(n) = f (n − 1)
f (0) = 0
g(0) = 1

⇔

f (n) = f (n − 1) + f (n − 2)
f (0) = 0
f (1) = 1

Fibonacci

Ritam Raha Weighted Automata with ambiguity and extensions 43 / 51

WA & LRS:

Let’s come back to LRS again:
Linear Recurrence System: Each term of a sequence is a linear function
of earlier terms in the sequence.

f (n) = f (n − 1) + g(n − 1)
g(n) = f (n − 1)
f (0) = 0
g(0) = 1

⇔

f (n) = f (n − 1) + f (n − 2)
f (0) = 0
f (1) = 1

Fibonacci

Ritam Raha Weighted Automata with ambiguity and extensions 43 / 51

WA & LRS:

Consider Σ = {a}

f : Σ∗ → R⇒ f ′ : N→ R f ′(n) = f (an)

1

1

2

2

Ritam Raha Weighted Automata with ambiguity and extensions 44 / 51

WA & LRS:

Consider Σ = {a}
f : Σ∗ → R⇒ f ′ : N→ R f ′(n) = f (an)

1

1

2

2

Ritam Raha Weighted Automata with ambiguity and extensions 44 / 51

WA & LRS:

Consider Σ = {a}
f : Σ∗ → R⇒ f ′ : N→ R f ′(n) = f (an)

start

a1

a1

a2

a2

Ritam Raha Weighted Automata with ambiguity and extensions 44 / 51

WA & LRS:

Consider Σ = {a}
f : Σ∗ → R⇒ f ′ : N→ R f ′(n) = f (an)

start

1

1

2

2

Ritam Raha Weighted Automata with ambiguity and extensions 44 / 51

WA & LRS:

Consider Σ = {a}
f : Σ∗ → R⇒ f ′ : N→ R f ′(n) = f (an)

istart

h

g

f

1

1

2

2

Ritam Raha Weighted Automata with ambiguity and extensions 44 / 51

WA & LRS:

Consider Σ = {a}
f : Σ∗ → R⇒ f ′ : N→ R f ′(n) = f (an)

istart

h

g

f

1

1

2

2

f (n) = 2.g(n − 1) + 2.h(n − 1)
g(n) = i(n − 1)
h(n) = i(n − 1)

Ritam Raha Weighted Automata with ambiguity and extensions 44 / 51

WA & LRS:

Consider Σ = {a}
f : Σ∗ → R⇒ f ′ : N→ R f ′(n) = f (an)

istart

h

g

f

1

1

2

2

f (n) = 2.g(n − 1) + 2.h(n − 1)
g(n) = i(n − 1)
h(n) = i(n − 1)

Intuitively, counting the number of paths!!

Ritam Raha Weighted Automata with ambiguity and extensions 44 / 51

WCFG & Recursions:

WFA on one letter alphabet ⇒ Linear Recurrence System

Intuition was to count the number of accepting runs!!

WCFG ⇒ ??

Now, Intuition is to count the number of derivation trees!!

S → aA1 3 |aA3A4 2

S(n) = 3.A1(n − 1) + 2.A3 ∗ A4(n − 1), where
f ∗ g(k) =

∑k
i=0 f (i).g(k − i)

Same idea as in Catalan number!!

WCFG ⇒ Linear Recurrence System with finitely many Cauchy product.

Ritam Raha Weighted Automata with ambiguity and extensions 45 / 51

WCFG & Recursions:

WFA on one letter alphabet ⇒ Linear Recurrence System

Intuition was to count the number of accepting runs!!

WCFG ⇒ ??

Now, Intuition is to count the number of derivation trees!!

S → aA1 3 |aA3A4 2

S(n) = 3.A1(n − 1) + 2.A3 ∗ A4(n − 1), where
f ∗ g(k) =

∑k
i=0 f (i).g(k − i)

Same idea as in Catalan number!!

WCFG ⇒ Linear Recurrence System with finitely many Cauchy product.

Ritam Raha Weighted Automata with ambiguity and extensions 45 / 51

WCFG & Recursions:

WFA on one letter alphabet ⇒ Linear Recurrence System

Intuition was to count the number of accepting runs!!

WCFG ⇒ ??

Now, Intuition is to count the number of derivation trees!!

S → aA1 3 |aA3A4 2

S(n) = 3.A1(n − 1) + 2.A3 ∗ A4(n − 1), where
f ∗ g(k) =

∑k
i=0 f (i).g(k − i)

Same idea as in Catalan number!!

WCFG ⇒ Linear Recurrence System with finitely many Cauchy product.

Ritam Raha Weighted Automata with ambiguity and extensions 45 / 51

WCFG & Recursions:

WFA on one letter alphabet ⇒ Linear Recurrence System

Intuition was to count the number of accepting runs!!

WCFG ⇒ ??

Now, Intuition is to count the number of derivation trees!!

S → aA1 3 |aA3A4 2

S(n) = 3.A1(n − 1) + 2.A3 ∗ A4(n − 1), where
f ∗ g(k) =

∑k
i=0 f (i).g(k − i)

Same idea as in Catalan number!!

WCFG ⇒ Linear Recurrence System with finitely many Cauchy product.

Ritam Raha Weighted Automata with ambiguity and extensions 45 / 51

WCFG & Recursions:

WFA on one letter alphabet ⇒ Linear Recurrence System

Intuition was to count the number of accepting runs!!

WCFG ⇒ ??

Now, Intuition is to count the number of derivation trees!!

S → aA1 3 |aA3A4 2

S(n) = 3.A1(n − 1) + 2.A3 ∗ A4(n − 1), where
f ∗ g(k) =

∑k
i=0 f (i).g(k − i)

Same idea as in Catalan number!!

WCFG ⇒ Linear Recurrence System with finitely many Cauchy product.

Ritam Raha Weighted Automata with ambiguity and extensions 45 / 51

WCFG & Recursions:

WFA on one letter alphabet ⇒ Linear Recurrence System

Intuition was to count the number of accepting runs!!

WCFG ⇒ ??

Now, Intuition is to count the number of derivation trees!!

S → aA1 3 |aA3A4 2

S(n) = 3.A1(n − 1) + 2.A3 ∗ A4(n − 1), where
f ∗ g(k) =

∑k
i=0 f (i).g(k − i)

Same idea as in Catalan number!!

WCFG ⇒ Linear Recurrence System with finitely many Cauchy product.

Ritam Raha Weighted Automata with ambiguity and extensions 45 / 51

WCFG & Recursions:

WFA on one letter alphabet ⇒ Linear Recurrence System

Intuition was to count the number of accepting runs!!

WCFG ⇒ ??

Now, Intuition is to count the number of derivation trees!!

S → aA1 3 |aA3A4 2

S(n) = 3.A1(n − 1) + 2.A3 ∗ A4(n − 1), where
f ∗ g(k) =

∑k
i=0 f (i).g(k − i)

Same idea as in Catalan number!!

WCFG ⇒ Linear Recurrence System with finitely many Cauchy product.

Ritam Raha Weighted Automata with ambiguity and extensions 45 / 51

WCFG & mathematical characterization:

Function recognized by WFA on one letter alphabet⇒ Rational function

Function recognized by WCFG on one letter alphabet ⇒ Something
special??

Formally, let pk = weight of the word ak in G . Can we characterize the
power series P(x) =

∑∞
k=0 pkx

k?

Notice that this is the generating function of the given weighted grammar.

Ritam Raha Weighted Automata with ambiguity and extensions 46 / 51

WCFG & mathematical characterization:

Function recognized by WFA on one letter alphabet⇒ Rational function

Function recognized by WCFG on one letter alphabet ⇒ Something
special??

Formally, let pk = weight of the word ak in G . Can we characterize the
power series P(x) =

∑∞
k=0 pkx

k?

Notice that this is the generating function of the given weighted grammar.

Ritam Raha Weighted Automata with ambiguity and extensions 46 / 51

WCFG & mathematical characterization:

Function recognized by WFA on one letter alphabet⇒ Rational function

Function recognized by WCFG on one letter alphabet ⇒ Something
special??

Formally, let pk = weight of the word ak in G . Can we characterize the
power series P(x) =

∑∞
k=0 pkx

k?

Notice that this is the generating function of the given weighted grammar.

Ritam Raha Weighted Automata with ambiguity and extensions 46 / 51

WCFG & mathematical characterization:

Function recognized by WFA on one letter alphabet⇒ Rational function

Function recognized by WCFG on one letter alphabet ⇒ Something
special??

Formally, let pk = weight of the word ak in G . Can we characterize the
power series P(x) =

∑∞
k=0 pkx

k?

Notice that this is the generating function of the given weighted grammar.

Ritam Raha Weighted Automata with ambiguity and extensions 46 / 51

WCFG & mathematical characterization:

Chomsky–Schützenberger Enumeration Theorem

If L is a context-free language admitting an unambiguous context-free
grammar, and ak := |L∩Σk | is the number of words of length k in L, then
G (x) =

∑∞
k=0 akx

k is a power series over N that is algebraic over Q(x).

Consider any unary WCFG G on semiring N with all weights 1. For every
rule, we replace the terminal a with a new terminal and produce a different
grammar G ′ on a large alphabet.

It can be shown that, G ′ is unambiguous and ambiguity of ak in G=
number of k-length words in G ′.

What happens if all the weights are not 1?

Ritam Raha Weighted Automata with ambiguity and extensions 47 / 51

WCFG & mathematical characterization:

Chomsky–Schützenberger Enumeration Theorem

If L is a context-free language admitting an unambiguous context-free
grammar, and ak := |L∩Σk | is the number of words of length k in L, then
G (x) =

∑∞
k=0 akx

k is a power series over N that is algebraic over Q(x).

Consider any unary WCFG G on semiring N with all weights 1. For every
rule, we replace the terminal a with a new terminal and produce a different
grammar G ′ on a large alphabet.

It can be shown that, G ′ is unambiguous and ambiguity of ak in G=
number of k-length words in G ′.

What happens if all the weights are not 1?

Ritam Raha Weighted Automata with ambiguity and extensions 47 / 51

WCFG & mathematical characterization:

Chomsky–Schützenberger Enumeration Theorem

If L is a context-free language admitting an unambiguous context-free
grammar, and ak := |L∩Σk | is the number of words of length k in L, then
G (x) =

∑∞
k=0 akx

k is a power series over N that is algebraic over Q(x).

Consider any unary WCFG G on semiring N with all weights 1. For every
rule, we replace the terminal a with a new terminal and produce a different
grammar G ′ on a large alphabet.

It can be shown that, G ′ is unambiguous and ambiguity of ak in G=
number of k-length words in G ′.

What happens if all the weights are not 1?

Ritam Raha Weighted Automata with ambiguity and extensions 47 / 51

WCFG & mathematical characterization:

Chomsky–Schützenberger Enumeration Theorem

If L is a context-free language admitting an unambiguous context-free
grammar, and ak := |L∩Σk | is the number of words of length k in L, then
G (x) =

∑∞
k=0 akx

k is a power series over N that is algebraic over Q(x).

Consider any unary WCFG G on semiring N with all weights 1. For every
rule, we replace the terminal a with a new terminal and produce a different
grammar G ′ on a large alphabet.

It can be shown that, G ′ is unambiguous and ambiguity of ak in G=
number of k-length words in G ′.

What happens if all the weights are not 1?

Ritam Raha Weighted Automata with ambiguity and extensions 47 / 51

WCFG & mathematical characterization:

Suppose some rule has weight k ∈ N.

We will simply produce k- copies of
the same rule with k- new terminals. a huge alphabet!!

Now, weight of ak in G= number of k-length words in G ′.
Apply Enumeration Theorem!!

Corollary

Given a WCFG on N on a unary alphabet, the generating function
P(x) =

∑∞
k=0 pkx

k is algebraic over Q(x).

Ritam Raha Weighted Automata with ambiguity and extensions 48 / 51

WCFG & mathematical characterization:

Suppose some rule has weight k ∈ N. We will simply produce k- copies of
the same rule with k- new terminals.

a huge alphabet!!

Now, weight of ak in G= number of k-length words in G ′.
Apply Enumeration Theorem!!

Corollary

Given a WCFG on N on a unary alphabet, the generating function
P(x) =

∑∞
k=0 pkx

k is algebraic over Q(x).

Ritam Raha Weighted Automata with ambiguity and extensions 48 / 51

WCFG & mathematical characterization:

Suppose some rule has weight k ∈ N. We will simply produce k- copies of
the same rule with k- new terminals. a huge alphabet!!

Now, weight of ak in G= number of k-length words in G ′.
Apply Enumeration Theorem!!

Corollary

Given a WCFG on N on a unary alphabet, the generating function
P(x) =

∑∞
k=0 pkx

k is algebraic over Q(x).

Ritam Raha Weighted Automata with ambiguity and extensions 48 / 51

WCFG & mathematical characterization:

Suppose some rule has weight k ∈ N. We will simply produce k- copies of
the same rule with k- new terminals. a huge alphabet!!

Now, weight of ak in G= number of k-length words in G ′.

Apply Enumeration Theorem!!

Corollary

Given a WCFG on N on a unary alphabet, the generating function
P(x) =

∑∞
k=0 pkx

k is algebraic over Q(x).

Ritam Raha Weighted Automata with ambiguity and extensions 48 / 51

WCFG & mathematical characterization:

Suppose some rule has weight k ∈ N. We will simply produce k- copies of
the same rule with k- new terminals. a huge alphabet!!

Now, weight of ak in G= number of k-length words in G ′.
Apply Enumeration Theorem!!

Corollary

Given a WCFG on N on a unary alphabet, the generating function
P(x) =

∑∞
k=0 pkx

k is algebraic over Q(x).

Ritam Raha Weighted Automata with ambiguity and extensions 48 / 51

WCFG & mathematical characterization:

Suppose some rule has weight k ∈ N. We will simply produce k- copies of
the same rule with k- new terminals. a huge alphabet!!

Now, weight of ak in G= number of k-length words in G ′.
Apply Enumeration Theorem!!

Corollary

Given a WCFG on N on a unary alphabet, the generating function
P(x) =

∑∞
k=0 pkx

k is algebraic over Q(x).

Ritam Raha Weighted Automata with ambiguity and extensions 48 / 51

Conclusion

Further Questions:

How to effectively learn a Weighted Context-Free Grammar?

Better mathematical characterizations for functions realized by
WCFG?

Ritam Raha Weighted Automata with ambiguity and extensions 49 / 51

References

Raphaël Bailly, Xavier Carreras, Franco M. Luque, and Ariadna
Quattoni.
Unsupervised spectral learning of WCFG as low-rank matrix
completion.

Vijay Bhattiprolu, Spencer Gordon, and Mahesh Viswanathan.
Extending parikh’s theorem to weighted and probabilistic context-free
grammars.
Lecture Notes in Computer Science.

Symeon Bozapalidis and Olympia Louscou-Bozapalidou.
The rank of a formal tree power series.
Theor. Comput. Sci., 27:211–215, 1983.

Nathanael Fijalkow.
Blog-post on angluin’s style learning for weighted automata.

Nathanael Fijalkow.
Blog-post on fliess’ theorem for minimising weighted automata.

Ritam Raha Weighted Automata with ambiguity and extensions 50 / 51

Thank you!!

Ritam Raha Weighted Automata with ambiguity and extensions 51 / 51

	Weighted Automata
	Hankel Matrix
	Ambiguity
	Universality with Ambiguity
	Introduction to Weighted Context-Free Grammar
	Learning WCFG
	Properties of WCFG

