Revisiting Parameter Synthesis for One-Counter Automata

Ritam Raha
(Joint work with Guillermo Alberto Perez ${ }^{1}$)
${ }^{1}$ University of Antwerp, Antwerp, Belgium
${ }^{2}$ LaBRI, Université de Bordeaux, France
OFCOURSE talk series, MPI-SWS, Germany

Universiteit Antwerpen

Using the control flow graph

```
1 x = 0
2 i = 0
3 i += x
4 while i >= 0:
5 if i == 0:
    print("Hello world!")
        if i == 1:
            print("Lockdown = pain")
        if i == 2:
            print("P=NP!")
        if i >= 3:
            assert(False)
        i -= 1
# end program
```


Using the control flow graph

```
1 x = 0
2 i = 0
3 i += x
4 while i >= 0:
5 if i == 0:
        print("Hello world!")
        if i == 1:
            print("Lockdown = pain")
        if i == 2:
            print("P=NP!")
        if i >= 3:
            assert(False)
        i -= 1
    # end program
```


Extending the CFG with a counter

```
1 x = 0
2 i = 0
3 i += x
4 while i >= 0:
5 if i == 0:
        print("Hello world!")
    if i == 1:
                print("Lockdown = pain")
        if i == 2
            print("P=NP!")
        if i >= 3:
        assert(False)
    i -= 1
    # end program
```


Parametric one-counter automata

```
def funprint(x):
    i = 0
    i += x
    while i >= 0:
        if i == 0:
            print("Hello world!")
        if i == 1:
            print("Lockdown = pain")
        if i == 2:
            print("P=NP!")
        if i >= 3:
            assert(False)
        i -= 1
    # end program
```


Parametric one-counter automata

```
def funprint(x):
    i = 0
    i += x
    while i >= 0:
        if i == 0:
            print("Hello world!")
        if i == 1:
            print("Lockdown = pain")
        if i == 2:
            print("P=NP!")
        if i >= 3:
            assert(False)
            i -= 1
    # end program
```


Outline

Synthesis Problems for One-Counter Automata

Presburger Arithmetic with Divisibility

Encoding Synthesis Problems into PAD

Going back to logic: BIL

Parametric One-Counter Automata

Natural-valued parameters
 $X=\left\{x_{1}, \ldots, x_{n}\right\}$

Parametric One-Counter Automata

Natural-valued parameters
 $X=\left\{x_{1}, \ldots, x_{n}\right\}$

Succinct OCA with Parameters

$\mathcal{A}=\left(Q, q_{0}, T, \delta, X\right)$, where $\delta: T \rightarrow O p$ with $O p$ the union of

Parametric One-Counter Automata

Natural-valued parameters
 $X=\left\{x_{1}, \ldots, x_{n}\right\}$

Succinct OCA with Parameters

$\mathcal{A}=\left(Q, q_{0}, T, \delta, X\right)$, where $\delta: T \rightarrow O p$ with $O p$ the union of

- $C U:=\{+a,-a: a \in \mathbb{N}\}, C T:=\{=a, \geq a: a \in \mathbb{N}\}$

Parametric One-Counter Automata

Natural-valued parameters
 $X=\left\{x_{1}, \ldots, x_{n}\right\}$

Succinct OCA with Parameters

$\mathcal{A}=\left(Q, q_{0}, T, \delta, X\right)$, where $\delta: T \rightarrow O p$ with $O p$ the union of

- $C U:=\{+a,-a: a \in \mathbb{N}\}, C T:=\{=a, \geq a: a \in \mathbb{N}\}$
- $P U:=\{+x,-x: x \in X\}, P T:=\{=x, \geq x: x \in X\}$

Synthesis problems

Definition (Parameter-value synthesis)

Is there some valuation $V: X \rightarrow \mathbb{N}$ such that all (infinite) runs of \mathcal{A} satisfy a given ω-regular property?

	LTL	Reachability	Safety Büchi coBüchi
Lower bound	PSPACE-hard	coNP-hard	- NP $^{N P}$-hard -
Upper bound	in N3EXP	- in N2EXP -	

Haase-Lechner approach via Logic

Logical formula: $x_{1} \geq 0 \wedge x_{1} \geq x_{2} \wedge 2 \mid x_{1}-x_{2}$

Presburger Arithmetic with divisibility!

Outline

Synthesis Problems for One-Counter Automata

Presburger Arithmetic with Divisibility

Encoding Synthesis Problems into PAD

Going back to logic: BIL

Presburger arithmetic with divisibility (PAD)

- Presburger arithmetic (PA) $=\mathrm{FO}(\mathbb{Z}, 0,1,+,<)$

Presburger arithmetic with divisibility (PAD)

- Presburger arithmetic (PA) $=\mathrm{FO}(\mathbb{Z}, 0,1,+,<)$
- Presburger arithmetic with divisibility (PAD) $=\mathrm{PA}+1$ $(a \mid b \Longleftrightarrow \exists c \in \mathbb{Z}: b=a c)$

Presburger arithmetic with divisibility (PAD)

- Presburger arithmetic (PA) $=\mathrm{FO}(\mathbb{Z}, 0,1,+,<)$
- Presburger arithmetic with divisibility (PAD) $=\mathrm{PA}+1$ $(a \mid b \Longleftrightarrow \exists c \in \mathbb{Z}: b=a c)$

Theorem (Robinson'49, Lipshitz'81)

Full PAD is undecidable; one alternation suffices for undecidability.

Presburger arithmetic with divisibility (PAD)

- Presburger arithmetic (PA) $=\mathrm{FO}(\mathbb{Z}, 0,1,+,<)$
- Presburger arithmetic with divisibility (PAD) $=\mathrm{PA}+1$
$(a \mid b \Longleftrightarrow \exists c \in \mathbb{Z}: b=a c)$

Theorem (Robinson'49, Lipshitz'81)

Full PAD is undecidable; one alternation suffices for undecidability.

Theorem (Lipshitz'78, Lechner-Ouaknine-Worrell'15)

The existential fragment of PAD (EPAD) is decidable and in NEXP.

Restriction: $\forall \exists \exists_{R}$ PAD

- $\forall \exists \exists_{R} \mathrm{PAD}=\forall x_{1} \ldots \forall x_{n} \exists y_{1} \ldots \exists y_{m} \cdot \varphi(\mathbf{x}, \mathbf{y})$
- in φ, divisibilities of the form $f(\mathbf{x}) \mid g(\mathbf{x}, \mathbf{y})$

Restriction: $\forall \exists \exists_{R}$ PAD

- $\forall \exists \exists_{R} \mathrm{PAD}=\forall x_{1} \ldots \forall x_{n} \exists y_{1} \ldots \exists y_{m} \cdot \varphi(\mathbf{x}, \mathbf{y})$
- in φ, divisibilities of the form $f(\mathbf{x}) \mid g(\mathbf{x}, \mathbf{y})$
- $\forall \exists \exists_{R} \mathrm{PAD}^{+}=\forall \exists \exists_{R} \mathrm{PAD}$ with \neg not allowed before divisibility
- A negation normal form where | cannot be negated

Restriction: $\forall \exists_{R}$ PAD

- $\forall \exists \exists_{R} \mathrm{PAD}=\forall x_{1} \ldots \forall x_{n} \exists y_{1} \ldots \exists y_{m} \cdot \varphi(\mathbf{x}, \mathbf{y})$
- in φ, divisibilities of the form $f(\mathbf{x}) \mid g(\mathbf{x}, \mathbf{y})$
- $\forall \exists \exists_{R}$ PAD $^{+}=\forall \exists \exists_{R}$ PAD with \neg not allowed before divisibility
- A negation normal form where | cannot be negated

Claim (Bozga-losif'05, Lechner'15)

The synthesis problems for SOCAP are decidable via an encoding into $\forall \exists \exists_{R} \mathrm{PAD}^{+}$.

Outline

Synthesis Problems for One-Counter Automata

Presburger Arithmetic with Divisibility

Encoding Synthesis Problems into PAD

Going back to logic: BIL

Encoding chronology

What we need?

Formulas $\varphi(\mathbf{x})$ such that $V: X \rightarrow \mathbb{N}$ satisfies φ iff \mathcal{A} has a V-run reaching t from s.

Encoding chronology

What we need?

Formulas $\varphi(\mathbf{x})$ such that $V: X \rightarrow \mathbb{N}$ satisfies φ iff \mathcal{A} has a V-run reaching t from s.
Witness or Certificates (Reachability Certificates)

Encoding chronology

What we need?

Formulas $\varphi(\mathbf{x})$ such that $V: X \rightarrow \mathbb{N}$ satisfies φ iff \mathcal{A} has a V-run reaching t from s.
Witness or Certificates (Reachability Certificates) : three types

Encoding chronology

What we need?

Formulas $\varphi(\mathbf{x})$ such that $V: X \rightarrow \mathbb{N}$ satisfies φ iff \mathcal{A} has a V-run reaching t from s.
Witness or Certificates (Reachability Certificates) : three types

- no positive cycles (type 1)
- begins with a positive cycle and ends with a negative cycle (type 2)
- no negative cycles (type 3)

Encoding chronology

What we need?

Formulas $\varphi(\mathbf{x})$ such that $V: X \rightarrow \mathbb{N}$ satisfies φ iff \mathcal{A} has a V-run reaching t from s.
Witness or Certificates (Reachability Certificates) : three types

- no positive cycles (type 1)
- begins with a positive cycle and ends with a negative cycle (type 2)
- no negative cycles (type 3)

Theorem (Haase et. al. '09)

If $(q, c) \rightsquigarrow\left(q^{\prime}, c^{\prime}\right)$ without zero-test, then $(q, c) \xrightarrow{\pi_{1} \pi_{2} \pi_{3}}$ such that, π_{1}, π_{2} and π_{3} are type 1, type 2 and type 3 reachability certificates.

Encoding chronology

What we need?

Formulas $\varphi(\mathbf{x})$ such that $V: X \rightarrow \mathbb{N}$ satisfies φ iff \mathcal{A} has a V-run reaching t from s.
Witness or Certificates (Reachability Certificates) : three types

- no positive cycles (type 1)
- begins with a positive cycle and ends with a negative cycle (type 2)
- no negative cycles (type 3)

Theorem (Haase et. al. '09)

If $(q, c) \rightsquigarrow\left(q^{\prime}, c^{\prime}\right)$ without zero-test, then $(q, c) \xrightarrow{\pi_{1} \pi_{2} \pi_{3}}$ such that, π_{1}, π_{2} and π_{3} are type 1, type 2 and type 3 reachability certificates.

Flows

Now what do we need?
PAD formulas that encodes certificates

Flows

Now what do we need?
PAD formulas that encodes certificates

$$
\begin{equation*}
\bigwedge_{q \notin\{s, t\}}\left(\sum_{p \in T(\cdot, q)} f(p, q)=\sum_{r \in T(q, \cdot)} f(q, r)\right) \tag{1}
\end{equation*}
$$

Flows

Now what do we need?
PAD formulas that encodes certificates

$$
\begin{equation*}
\bigwedge_{q \notin\{s, t\}}\left(\sum_{p \in T(\cdot, q)} f(p, q)=\sum_{r \in T(q, \cdot)} f(q, r)\right) \tag{1}
\end{equation*}
$$

Theorem (Euler's theorem for digraphs)

There is an s-t path iff there is a valuation of the f_{i} such that

- the subgraph induced by the support and $\{(t, s)\}$ are strongly connected,
- it satisfies (1) and $\sum_{p \in T(\cdot, s)} f(p, s)-\sum_{r \in T(s, \cdot)} f(s, r)=1$.

From paths to runs

A formula per subgraph

Now $\varphi_{\text {flow }}(\mathbf{f})$ is a disjunction of the flow constraints over all subgraphs which satisfy the support condition.

From paths to runs

A formula per subgraph

Now $\varphi_{\text {flow }}(\mathbf{f})$ is a disjunction of the flow constraints over all subgraphs which satisfy the support condition.

From paths to runs

A formula per subgraph

Now $\varphi_{\text {flow }}(\mathbf{f})$ is a disjunction of the flow constraints over all subgraphs which satisfy the support condition.

From paths to runs

A formula per subgraph

Now $\varphi_{\text {flow }}(\mathbf{f})$ is a disjunction of the flow constraints over all subgraphs which satisfy the support condition.

From paths to runs

A formula per subgraph

Now $\varphi_{\text {flow }}(\mathbf{f})$ is a disjunction of the flow constraints over all subgraphs which satisfy the support condition.

A path is not a run

Not every path can be lifted to a run because:

- of equality tests,
- the lower-bound tests,
- the counter value cannot go negative

Decomposed flows

Flow Decomposition
We want $f_{1}, f_{2}, \ldots, f_{|Q|}$ such that $f=\sum_{i=1}^{|Q|} f_{i}$ and:

Decomposed flows

Flow Decomposition

We want $f_{1}, f_{2}, \ldots, f_{|Q|}$ such that $f=\sum_{i=1}^{|Q|} f_{i}$ and:

- f_{i} is a flow witnessing a $q_{i}-q_{i+1}$ path,

Decomposed flows

Flow Decomposition

We want $f_{1}, f_{2}, \ldots, f_{|Q|}$ such that $f=\sum_{i=1}^{|Q|} f_{i}$ and:

- f_{i} is a flow witnessing a $q_{i}-q_{i+1}$ path,
- $f_{j}\left(p, q_{i}\right)=0$ for all $i \leq j$ and all $\left(p, q_{i}\right) \in T$.

Decomposed flows

Flow Decomposition

We want $f_{1}, f_{2}, \ldots, f_{|Q|}$ such that $f=\sum_{i=1}^{|Q|} f_{i}$ and:

- f_{i} is a flow witnessing a $q_{i}-q_{i+1}$ path,
- $f_{j}\left(p, q_{i}\right)=0$ for all $i \leq j$ and all $\left(p, q_{i}\right) \in T$.

Decomposed flows

Flow Decomposition

We want $f_{1}, f_{2}, \ldots, f_{|Q|}$ such that $f=\sum_{i=1}^{|Q|} f_{i}$ and:

- f_{i} is a flow witnessing a $q_{i}-q_{i+1}$ path,
- $f_{j}\left(p, q_{i}\right)=0$ for all $i \leq j$ and all $\left(p, q_{i}\right) \in T$.

Decomposed flows

Flow Decomposition

We want $f_{1}, f_{2}, \ldots, f_{|Q|}$ such that $f=\sum_{i=1}^{|Q|} f_{i}$ and:

- f_{i} is a flow witnessing a $q_{i}-q_{i+1}$ path,
- $f_{j}\left(p, q_{i}\right)=0$ for all $i \leq j$ and all $\left(p, q_{i}\right) \in T$.

Decomposed flows

Flow Decomposition

We want $f_{1}, f_{2}, \ldots, f_{|Q|}$ such that $f=\sum_{i=1}^{|Q|} f_{i}$ and:

- f_{i} is a flow witnessing a $q_{i}-q_{i+1}$ path,
- $f_{j}\left(p, q_{i}\right)=0$ for all $i \leq j$ and all $\left(p, q_{i}\right) \in T$.

Decomposed flows

Flow Decomposition

We want $f_{1}, f_{2}, \ldots, f_{|Q|}$ such that $f=\sum_{i=1}^{|Q|} f_{i}$ and:

- f_{i} is a flow witnessing a $q_{i}-q_{i+1}$ path,
- $f_{j}\left(p, q_{i}\right)=0$ for all $i \leq j$ and all $\left(p, q_{i}\right) \in T$.

Decomposed flows

Flow Decomposition

We want $f_{1}, f_{2}, \ldots, f_{|Q|}$ such that $f=\sum_{i=1}^{|Q|} f_{i}$ and:

- f_{i} is a flow witnessing a $q_{i}-q_{i+1}$ path,
- $f_{j}\left(p, q_{i}\right)=0$ for all $i \leq j$ and all $\left(p, q_{i}\right) \in T$.

Decomposed flows

Flow Decomposition

We want $f_{1}, f_{2}, \ldots, f_{|Q|}$ such that $f=\sum_{i=1}^{|Q|} f_{i}$ and:

- f_{i} is a flow witnessing a $q_{i}-q_{i+1}$ path,
- $f_{j}\left(p, q_{i}\right)=0$ for all $i \leq j$ and all $\left(p, q_{i}\right) \in T$.

type 1: No positive cycles

To check the path can be lifted to a run:

$$
\bigwedge_{m=1}^{|Q|} \sum_{i=1}^{m} \sum_{t \in T} f_{i}(t) \delta(t) \geq 0
$$

Weight formulas using divisibility

A formula per case $(1,2,3)$

Now $\varphi_{\text {weight }}(\mathbf{x}, \mathbf{f})$ is a disjunction of the weight constraints over all decompositions.
Weight constraints use multiplication! $\sum f_{i} x_{i} \geq 0$

Weight formulas using divisibility

A formula per case (1, 2, 3)

Now $\varphi_{\text {weight }}(\mathbf{x}, \mathbf{f})$ is a disjunction of the weight constraints over all decompositions.
Weight constraints use multiplication! $\sum f_{i} x_{i} \geq 0$

Divisibility to the rescue

Replace f_{x} with a product variable $z_{f x}$:

$$
\left(x_{i} \mid z_{f_{i} x_{i}}\right) \wedge\left(x_{i}>0 \leftrightarrow z_{f_{i} x_{i}}>0\right) \wedge\left(\sum z_{f_{i} x_{i}} \geq 0\right)
$$

Final PAD encoding

A formula per case

For each case, we get formulas like the following:

$$
\varphi(\mathbf{x}) \equiv \exists z_{1} z_{2} \cdots \bigvee_{\begin{array}{c}
\text { subgraphs } \\
\text { decomp }
\end{array}} \bigwedge_{i \in I}\left(g_{i}(\mathbf{x}) \mid h_{i}(\mathbf{z})\right) \wedge \varphi_{\text {nopos }}(\mathbf{x}) \wedge \mathbf{x}, \mathbf{z} \geq \mathbf{0}
$$

Final PAD encoding

A formula per case

For each case, we get formulas like the following:

$$
\varphi(\mathbf{x}) \equiv \exists z_{1} z_{2} \cdots \bigvee_{\begin{array}{c}
\text { subgraphs } \\
\text { decomp }
\end{array}} \bigwedge_{i \in I}\left(g_{i}(\mathbf{x}) \mid h_{i}(\mathbf{z})\right) \wedge \varphi_{\text {nopos }}(\mathbf{x}) \wedge \mathbf{x}, \mathbf{z} \geq \mathbf{0}
$$

The safety synthesis problem

- Positive answer if $\forall \mathbf{x} . \Phi(\mathbf{x})$ is false
- $\forall \mathbf{x} . \Phi(\mathbf{x})$ is a sentence in $\forall \exists_{R}$ PAD $^{+}$

Outline

Synthesis Problems for One-Counter Automata

Presburger Arithmetic with Divisibility

Encoding Synthesis Problems into PAD

Going back to logic: BIL

Restriction: $\forall \exists_{R}$ PAD

- $\forall \exists \exists_{R} \mathrm{PAD}=\forall x_{1} \ldots \forall x_{n} \exists y_{1} \ldots \exists y_{m} \cdot \varphi(\mathbf{x}, \mathbf{y})$
- in φ, divisibilities of the form $f(\mathbf{x}) \mid g(\mathbf{x}, \mathbf{y})$
- $\forall \exists \exists_{R}$ PAD $^{+}=\forall \exists \exists_{R}$ PAD with \neg not allowed before divisibility
- A negation normal form where | cannot be negated

Claim (Bozga-losif'05, Lechner'15)

The synthesis problems for SOCAP are decidable via an encoding into $\forall \exists \exists_{R} \mathrm{PAD}^{+}$.

$\forall \exists \exists_{R}$ PAD \& Undecidability

Theorem (Bozga-losif'05)

$\forall \exists \exists_{R} P A D$ is undecidable.

$\forall \exists \exists_{R}$ PAD \& Undecidability

Theorem (Bozga-losif'05)

$\forall \exists \exists_{R} P A D$ is undecidable.
Idea: $\mathrm{LCM} \Rightarrow$ Square $\left(x^{2}\right) \Rightarrow$ Multiplication

$\forall \exists \exists_{R}$ PAD \& Undecidability

Theorem (Bozga-losif'05)

$\forall \exists \exists_{R} P A D$ is undecidable.
Idea: LCM \Rightarrow Square (x^{2}) \Rightarrow Multiplication

- $\forall \exists \exists_{R} P A D^{+} \equiv \forall \exists \exists_{R} P A D:$

$\forall \exists \exists_{R}$ PAD \& Undecidability

Theorem (Bozga-losif'05)

$\forall \exists \exists_{R} P A D$ is undecidable.
Idea: $\mathrm{LCM} \Rightarrow$ Square $\left(x^{2}\right) \Rightarrow$ Multiplication

- $\forall \exists_{R}$ PAD $^{+} \equiv \forall \exists \exists_{R} \mathrm{PAD}:$

$$
\neg(a \mid b) \Longleftrightarrow \exists q \exists r(b=a q+r) \wedge(0<r<b)
$$

$\forall \exists \exists_{R}$ PAD \& Undecidability

Theorem (Bozga-losif'05)

$\forall \exists_{R} P A D$ is undecidable.
Idea: $\mathrm{LCM} \Rightarrow$ Square $\left(x^{2}\right) \Rightarrow$ Multiplication

- $\forall \exists_{R}$ PAD $^{+} \equiv \forall \exists \exists_{R} \mathrm{PAD}:$

Undecidable! $\neg(a \mid b) \Longleftrightarrow \exists q \exists r(b=a q+r) \wedge(0<r<b)$

A stronger restriction of $\forall \exists \exists_{R} \mathrm{PAD}$

- $\forall \exists \exists_{R}$ PAD $=\forall x_{1} \ldots \forall x_{n} \exists y_{1} \ldots \exists y_{m} \cdot \varphi(\mathbf{x}, \mathbf{z})$ with divisibilities $f(\mathbf{x}) \mid g(\mathbf{x}, \mathbf{y})$

A stronger restriction of $\forall \exists \exists_{R} \mathrm{PAD}$

- $\forall \exists \exists_{R} \mathrm{PAD}=\forall x_{1} \ldots \forall x_{n} \exists y_{1} \ldots \exists y_{m} . \varphi(\mathbf{x}, \mathbf{z})$ with divisibilities $f(\mathbf{x}) \mid g(\mathbf{x}, \mathbf{y})$
- The Bozga-losif-Lechner (BIL) fragment of $\forall \exists_{R}$ PAD:

$$
\forall x_{1} \ldots \forall x_{n} \in \mathbb{N}, \exists y_{1} \ldots \exists y_{m} \bigvee_{i \in I} \bigwedge_{j \in J_{i}}\left(\underline{f_{j}(\mathbf{x}) \mid g_{j}(\mathbf{x}, \mathbf{y})} \wedge f_{j}(x)>0\right) \wedge \underline{\varphi_{i}(\mathbf{x})} \wedge \mathbf{y} \geq \mathbf{0}
$$

A stronger restriction of $\forall \exists_{R} P A D$

- $\forall \exists \exists_{R} \mathrm{PAD}=\forall x_{1} \ldots \forall x_{n} \exists y_{1} \ldots \exists y_{m} . \varphi(\mathbf{x}, \mathbf{z})$ with divisibilities $f(\mathbf{x}) \mid g(\mathbf{x}, \mathbf{y})$
- The Bozga-losif-Lechner (BIL) fragment of $\forall \exists_{R}$ PAD:

$$
\forall x_{1} \ldots \forall x_{n} \in \mathbb{N}, \exists y_{1} \ldots \exists y_{m} \bigvee_{i \in I} \bigwedge_{j \in J_{i}}\left(\underline{f_{j}(\mathbf{x}) \mid g_{j}(\mathbf{x}, \mathbf{y})} \wedge f_{j}(x)>0\right) \wedge \underline{\varphi_{i}(\mathbf{x})} \wedge \mathbf{y} \geq \mathbf{0}
$$

Theorem

The BIL fragment is decidable and in coN2EXP.

A stronger restriction of $\forall \exists{ }_{R} \mathrm{PAD}$

- $\forall \exists \exists_{R}$ PAD $=\forall x_{1} \ldots \forall x_{n} \exists y_{1} \ldots \exists y_{m} . \varphi(\mathbf{x}, \mathbf{z})$ with divisibilities $f(\mathbf{x}) \mid g(\mathbf{x}, \mathbf{y})$
- The Bozga-losif-Lechner (BIL) fragment of $\forall \exists \exists_{R}$ PAD:

$$
\forall x_{1} \ldots \forall x_{n} \in \mathbb{N}, \exists y_{1} \ldots \exists y_{m} \bigvee_{i \in I} \bigwedge_{j \in J_{i}}\left(\underline{f_{j}(\mathbf{x}) \mid g_{j}(\mathbf{x}, \mathbf{y})} \wedge f_{j}(x)>0\right) \wedge \underline{\varphi_{i}(\mathbf{x})} \wedge \mathbf{y} \geq \mathbf{0}
$$

Theorem

The BIL fragment is decidable and in coN2EXP.
Idea. Quantifier elimination (Generalized Chinese Remainder Theorem!) - Similar idea to Bozga \& losif's work!

BIL is decidable!

Theorem (Generalized CRT)

Let $m_{i} \in \mathbb{N}_{>0}, a_{i}, r_{i} \in \mathbb{Z}$ for $1 \leq i \leq n$. Then,
$\exists x \in \mathbb{Z}, \bigwedge_{i=1}^{n} m_{i}\left|\left(a_{i} x-r_{i}\right) \Leftrightarrow \bigwedge_{1 \leq i, j \leq n} \operatorname{gcd}\left(a_{i} m_{j}, a_{j} m_{i}\right)\right|\left(a_{i} r_{j}-a_{j} r_{i}\right) \wedge \bigwedge_{i=1}^{n} \operatorname{gcd}\left(a_{i}, m_{i}\right) \mid r_{i}$
The solution for x is unique modulo $\operatorname{LCM}\left(m_{1}^{\prime}, \ldots, m_{n}^{\prime}\right)$, where $m_{i}^{\prime}=\frac{m_{i}}{\operatorname{gcd}\left(a_{i}, m_{i}\right)}$.

BIL is decidable!

Example:

$$
\forall x \exists y \bigvee_{i \in I} \bigwedge_{j \in J_{i}}\left(f_{j}(x) \mid\left(\beta_{j}(x)+\alpha_{j}(y)\right) \wedge f_{j}(x)>0\right) \wedge \varphi_{i}(x) \wedge y \geq 0 \Rightarrow
$$

Example:

$$
\begin{aligned}
& \forall x \exists y \bigvee_{i \in I} \bigwedge_{j \in J_{i}}\left(f_{j}(x) \mid\left(\beta_{j}(x)+\alpha_{j}(y)\right) \wedge f_{j}(x)>0\right) \wedge \varphi_{i}(x) \wedge y \geq 0 \Rightarrow \\
& \forall x \bigvee_{i \in I}\left(\exists y \bigwedge_{j \in J_{i}}\left(f_{j}(x) \mid\left(\alpha_{j}(y)-\left(-\beta_{j}(x)\right)\right) \wedge y \geq 0\right) \wedge \varphi_{i}^{\prime}(x) \Rightarrow\right. \\
& \forall x \bigvee_{i \in I}\left(\bigwedge_{j, k \in J_{i}} \operatorname{gcd}\left(\alpha_{k} f_{j}(x), \alpha_{j} f_{k}(x)\right)\left|\left(\alpha_{j} \beta_{k}(x)-\alpha_{k} \beta_{j}(x)\right) \wedge \bigwedge_{j \in J_{i}} \operatorname{gcd}\left(\alpha_{j}, f_{j}(x)\right)\right| \beta_{j}(x)\right) \\
& \wedge \varphi_{i}^{\prime}(x)
\end{aligned}
$$

Example:

$$
\begin{aligned}
& \forall x \exists y \bigvee_{i \in I} \bigwedge_{j \in J_{i}}\left(f_{j}(x) \mid\left(\beta_{j}(x)+\alpha_{j}(y)\right) \wedge f_{j}(x)>0\right) \wedge \varphi_{i}(x) \wedge y \geq 0 \Rightarrow \\
& \forall x \bigvee_{i \in I}\left(\exists y \bigwedge_{j \in J_{i}}\left(f_{j}(x) \mid\left(\alpha_{j}(y)-\left(-\beta_{j}(x)\right)\right) \wedge y \geq 0\right) \wedge \varphi_{i}^{\prime}(x) \Rightarrow\right. \\
& \forall x \bigvee_{i \in I}\left(\bigwedge_{j, k \in J_{i}} \operatorname{gcd}\left(\alpha_{k} f_{j}(x), \alpha_{j} f_{k}(x)\right)\left|\left(\alpha_{j} \beta_{k}(x)-\alpha_{k} \beta_{j}(x)\right) \wedge \bigwedge_{j \in J_{i}} \operatorname{gcd}\left(\alpha_{j}, f_{j}(x)\right)\right| \beta_{j}(x)\right) \\
& \wedge \varphi_{i}^{\prime}(x)
\end{aligned}
$$

Synthesis Problem to BIL!

- Synthesis of SOCA is encodable in BIL fragment.

Synthesis Problem to BIL!

- Synthesis of SOCA is encodable in BIL fragment.
- Idea. Careful encoding of "Reachability Certificates" to BIL- Similar to previous encoding!

Synthesis Problem to BIL!

- Synthesis of SOCA is encodable in BIL fragment.
- Idea. Careful encoding of "Reachability Certificates" to BIL- Similar to previous encoding!

Theorem

The reachability, Büchi, coBüchi, and safety parameter synthesis problems for SOCA are all decidable in N2EXP. The LTL synthesis problem for SOCA is decidable in N3EXP.

Synthesis Problem to BIL!

- Synthesis of SOCA is encodable in BIL fragment.
- Idea. Careful encoding of "Reachability Certificates" to BIL- Similar to previous encoding!

Theorem

The reachability, Büchi, coBüchi, and safety parameter synthesis problems for SOCA are all decidable in N2EXP. The LTL synthesis problem for SOCA is decidable in N3EXP.

- Restrict to Parametric Tests \& Constant Updates: synthesis is in PSPACE.

Synthesis Problem to BIL!

- Synthesis of SOCA is encodable in BIL fragment.
- Idea. Careful encoding of "Reachability Certificates" to BIL- Similar to previous encoding!

Theorem

The reachability, Büchi, coBüchi, and safety parameter synthesis problems for SOCA are all decidable in N2EXP. The LTL synthesis problem for SOCA is decidable in N3EXP.

- Restrict to Parametric Tests \& Constant Updates: synthesis is in PSPACE.
- Idea. Reduction to Alternating 2-way automata (using idea from Bollig et.al'19)

Conclusion

	LTL	Reachability	Safety Büchi coBüchi
Lower bound	PSPACE-hard	coNP-hard	$-\mathbf{N P}^{N P}$-hard -
Upper bound	in N3EXP	- in N2EXP -	

Conclusion

	LTL	Reachability	Safety Büchi coBüchi
Lower bound	PSPACE-hard	coNP-hard	- NP $^{N P}$-hard -
Upper bound	in N3EXP	- in N2EXP -	

Summary.

- BIL: largest known decidable fragment of one alternation PAD!

Conclusion

	LTL	Reachability	Safety Büchi coBüchi
Lower bound	PSPACE-hard	coNP-hard	- NP $^{N P}$-hard -
Upper bound	in N3EXP	- in N2EXP -	

Summary.

- BIL: largest known decidable fragment of one alternation PAD!
- Parameter Synthesis for SOCA is decidable!

Conclusion

	LTL	Reachability	Safety Büchi coBüchi
Lower bound	PSPACE-hard	coNP-hard	- NP $^{N P}$-hard -
Upper bound	in N3EXP	- in N2EXP -	

Summary.

- BIL: largest known decidable fragment of one alternation PAD!
- Parameter Synthesis for SOCA is decidable!

Open Questions.

- Exact lower bounds: both for BIL \& Synthesis problems!

Conclusion

	LTL	Reachability	Safety Büchi coBüchi
Lower bound	PSPACE-hard	coNP-hard	- NP $^{N P}$-hard -
Upper bound	in N3EXP	- in N2EXP -	

Summary.

- BIL: largest known decidable fragment of one alternation PAD!
- Parameter Synthesis for SOCA is decidable!

Open Questions.

- Exact lower bounds: both for BIL \& Synthesis problems!
- BIL to Synthesis: the opposite side reduction?

Thank you for your attention!

