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Using the control flow graph

1 x = 0

2 i = 0

3 i += x

4 while i >= 0:

5 if i == 0:

6 print("Hello world!")

7 if i == 1:

8 print("Lockdown = pain")

9 if i == 2:

10 print("P=NP!")

11 if i >= 3:

12 assert(False)

13 i -= 1

14 # end program
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Extending the CFG with a counter
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Parametric one-counter automata

1 def funprint(x):
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4 while i >= 0:

5 if i == 0:

6 print("Hello world!")

7 if i == 1:

8 print("Lockdown = pain")

9 if i == 2:

10 print("P=NP!")

11 if i >= 3:

12 assert(False)

13 i -= 1

14 # end program

1–20

3 4 5

6 7

8 9

10 11

13 12

assertion

14

end

+x ≥ 0

= 0

= 1

= 2

≥ 3

−1

Ritam Raha 4/27



Parametric one-counter automata

1 def funprint(x):

2 i = 0

3 i += x

4 while i >= 0:

5 if i == 0:

6 print("Hello world!")

7 if i == 1:

8 print("Lockdown = pain")

9 if i == 2:

10 print("P=NP!")

11 if i >= 3:

12 assert(False)

13 i -= 1

14 # end program

1–20

3 4 5

6 7

8 9

10 11

13 12

assertion

14

end

+x ≥ 0

= 0

= 1

= 2

≥ 3

−1

Ritam Raha 4/27



Outline

Synthesis Problems for One-Counter Automata

Presburger Arithmetic with Divisibility

Encoding Synthesis Problems into PAD

Going back to logic: BIL
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Parametric One-Counter Automata

Natural-valued parameters

X = {x1, . . . , xn}
0 bad

end

+x1

= 0

= x2

+0

+0

+0

+0

−5

≥ x3

+0

Succinct OCA with Parameters

A = (Q, q0,T , δ,X ), where δ : T → Op with Op the union of

▶ CU := {+a,−a : a ∈ N}, CT := {= a,≥ a : a ∈ N}
▶ PU := {+x ,−x : x ∈ X}, PT := {= x ,≥ x : x ∈ X}
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Synthesis problems

Definition (Parameter-value synthesis)

Is there some valuation V : X → N such that all (infinite) runs of A satisfy a given
ω-regular property?

end
+x1 −x2 = 0

−2

+0

LTL Reachability Safety Büchi coBüchi

Lower bound PSPACE-hard coNP-hard — NPNP-hard —

Upper bound in N3EXP — in N2EXP —
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Haase-Lechner approach via Logic

end
+x1 −x2 = 0

−2

+0

Logical formula: x1 ≥ 0 ∧ x1 ≥ x2 ∧ 2|x1 − x2

Presburger Arithmetic with divisibility!
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Synthesis Problems for One-Counter Automata

Presburger Arithmetic with Divisibility

Encoding Synthesis Problems into PAD

Going back to logic: BIL
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Presburger arithmetic with divisibility (PAD)

▶ Presburger arithmetic (PA) = FO(Z, 0, 1,+, <)

▶ Presburger arithmetic with divisibility (PAD) = PA + |
(a | b ⇐⇒ ∃c ∈ Z : b = ac)

Theorem (Robinson’49, Lipshitz’81)

Full PAD is undecidable; one alternation suffices for undecidability.

Theorem (Lipshitz’78, Lechner-Ouaknine-Worrell’15)

The existential fragment of PAD (EPAD) is decidable and in NEXP.
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Restriction: ∀∃RPAD

▶ ∀∃RPAD = ∀x1 . . . ∀xn∃y1 . . . ∃ym. φ(x, y)
▶ in φ, divisibilities of the form f (x) | g(x, y)

▶ ∀∃RPAD+ = ∀∃RPAD with ¬ not allowed before divisibility
▶ A negation normal form where | cannot be negated

Claim (Bozga-Iosif’05, Lechner’15)

The synthesis problems for SOCAP are decidable via an encoding into ∀∃RPAD+.
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Encoding chronology

What we need?

Formulas φ(x) such that V : X → N satisfies φ iff A has a V -run reaching t from s.

Witness or Certificates (Reachability Certificates) : three types

▶

▶ begins with a positive cycle and ends with a negative cycle (type 2)

▶ no negative cycles (type 3)

Theorem (Haase et. al. ’09)

If (q, c)⇝ (q′, c ′) without zero-test, then (q, c)
π1π2π3−−−−→ such that, π1, π2 and π3 are

type 1, type 2 and type 3 reachability certificates.
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Flows

Now what do we need?

PAD formulas that encodes certificates

s

t

f 1
f
2

f 3

f 4

f 5

f
6

f 7

∧
q ̸∈{s,t}

 ∑
p∈T (·,q)

f (p, q) =
∑

r∈T (q,·)

f (q, r)

 (1)

Theorem (Euler’s theorem for digraphs)

There is an s–t path iff there is a valuation of the fi such that

▶ the subgraph induced by the support and {(t, s)} are strongly connected,

▶ it satisfies (1) and
∑

p∈T (·,s) f (p, s)−
∑

r∈T (s,·) f (s, r) = 1.
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From paths to runs

A formula per subgraph

Now φflow(f) is a disjunction of the flow constraints over all subgraphs which satisfy the
support condition.

A path is not a run

Not every path can be lifted to a run because:

▶ of equality tests,

▶ the lower-bound tests,

▶ the counter value cannot go negative

s

t

f 1

f
2

f 3

f 4

f 5

f
6

f 7
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Decomposed flows

Flow Decomposition

We want f1, f2, . . . , f|Q| such that f =
∑|Q|

i=1 fi and:

▶ fi is a flow witnessing a qi–qi+1 path,

▶ fj(p, qi ) = 0 for all i ≤ j and all (p, qi ) ∈ T .

q1 q5 q3

q2

q4

q6

(2)1

(2
)1

(3)2

(3)1

(3)1

(4)1

(6
)1

(3)2

(5)1

type 1: No positive cycles

To check the path can be lifted to a run:

|Q|∧
m=1

m∑
i=1

∑
t∈T

fi (t)δ(t) ≥ 0
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∑|Q|

i=1 fi and:

▶ fi is a flow witnessing a qi–qi+1 path,

▶ fj(p, qi ) = 0 for all i ≤ j and all (p, qi ) ∈ T .
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Weight formulas using divisibility

A formula per case (1, 2, 3)

Now φweight(x, f) is a disjunction of the weight constraints over all decompositions.

Weight constraints use multiplication!
∑

fixi ≥ 0

Divisibility to the rescue

Replace fx with a product variable zfx :

(xi | zfixi ) ∧ (xi > 0 ↔ zfixi > 0) ∧
(∑

zfixi ≥ 0
)
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Final PAD encoding

A formula per case

For each case, we get formulas like the following:

φ(x) ≡ ∃z1z2 · · ·
∨

subgraphs
decomp

∧
i∈I

(gi (x) | hi (z)) ∧ φnopos(x) ∧ x, z ≥ 0

The safety synthesis problem

▶ Positive answer if ∀x.Φ(x) is false
▶ ∀x.Φ(x) is a sentence in ∀∃RPAD+
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Outline

Synthesis Problems for One-Counter Automata

Presburger Arithmetic with Divisibility

Encoding Synthesis Problems into PAD

Going back to logic: BIL
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Restriction: ∀∃RPAD

▶ ∀∃RPAD = ∀x1 . . . ∀xn∃y1 . . . ∃ym. φ(x, y)
▶ in φ, divisibilities of the form f (x) | g(x, y)

▶ ∀∃RPAD+ = ∀∃RPAD with ¬ not allowed before divisibility
▶ A negation normal form where | cannot be negated

Claim (Bozga-Iosif’05, Lechner’15)

The synthesis problems for SOCAP are decidable via an encoding into ∀∃RPAD+.
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∀∃RPAD & Undecidability

Theorem (Bozga-Iosif’05)

∀∃RPAD is undecidable.

Idea: LCM ⇒ Square (x2) ⇒ Multiplication

▶ ∀∃RPAD+ ≡ ∀∃RPAD :

¬(a | b) ⇐⇒ ∃q∃r(b = aq + r) ∧ (0 < r < b)Undecid
able!!
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A stronger restriction of ∀∃RPAD

▶ ∀∃RPAD = ∀x1 . . . ∀xn∃y1 . . . ∃ym. φ(x, z) with divisibilities f (x) | g(x, y)

▶ The Bozga-Iosif-Lechner (BIL) fragment of ∀∃RPAD:

∀x1 . . . ∀xn ∈ N, ∃y1 . . . ∃ym
∨
i∈I

∧
j∈Ji

(
fj(x) | gj(x, y) ∧ fj(x) > 0

)
∧ φi (x) ∧ y ≥ 0

Theorem

The BIL fragment is decidable and in coN2EXP.

Idea. Quantifier elimination (Generalized Chinese Remainder Theorem!) - Similar idea
to Bozga & Iosif’s work!
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BIL is decidable!

Theorem (Generalized CRT)

Let mi ∈ N>0, ai , ri ∈ Z for 1 ≤ i ≤ n. Then,

∃x ∈ Z,
n∧

i=1

mi | (aix − ri ) ⇔
∧

1≤i ,j≤n

gcd(aimj , ajmi ) | (ai rj − aj ri ) ∧
n∧

i=1

gcd(ai ,mi ) | ri

The solution for x is unique modulo LCM(m′
1, . . . ,m

′
n), where m′

i =
mi

gcd(ai ,mi )
.
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BIL is decidable!

Example:

∀x∃y
∨
i∈I

∧
j∈Ji

(fj(x) | (βj(x) + αj(y)) ∧ fj(x) > 0) ∧ φi (x) ∧ y ≥ 0 ⇒

∀x
∨
i∈I

∃y
∧
j∈Ji

(fj(x) | (αj(y)− (−βj(x))) ∧ y ≥ 0

 ∧ φ′
i (x) ⇒

∀x
∨
i∈I

 ∧
j ,k∈Ji

gcd(αk fj(x), αj fk(x)) | (αjβk(x)− αkβj(x)) ∧
∧
j∈Ji

gcd(αj , fj(x)) | βj(x)


∧ φ′

i (x)

∀PAD!

Ritam Raha 24/27



BIL is decidable!

Example:

∀x∃y
∨
i∈I

∧
j∈Ji

(fj(x) | (βj(x) + αj(y)) ∧ fj(x) > 0) ∧ φi (x) ∧ y ≥ 0 ⇒

∀x
∨
i∈I

∃y
∧
j∈Ji

(fj(x) | (αj(y)− (−βj(x))) ∧ y ≥ 0

 ∧ φ′
i (x) ⇒

∀x
∨
i∈I

 ∧
j ,k∈Ji

gcd(αk fj(x), αj fk(x)) | (αjβk(x)− αkβj(x)) ∧
∧
j∈Ji

gcd(αj , fj(x)) | βj(x)


∧ φ′

i (x)

∀PAD!

Ritam Raha 24/27



BIL is decidable!

Example:

∀x∃y
∨
i∈I

∧
j∈Ji

(fj(x) | (βj(x) + αj(y)) ∧ fj(x) > 0) ∧ φi (x) ∧ y ≥ 0 ⇒

∀x
∨
i∈I

∃y
∧
j∈Ji

(fj(x) | (αj(y)− (−βj(x))) ∧ y ≥ 0

 ∧ φ′
i (x) ⇒

∀x
∨
i∈I

 ∧
j ,k∈Ji

gcd(αk fj(x), αj fk(x)) | (αjβk(x)− αkβj(x)) ∧
∧
j∈Ji

gcd(αj , fj(x)) | βj(x)


∧ φ′

i (x)

∀PAD!
Ritam Raha 24/27



Synthesis Problem to BIL!

▶ Synthesis of SOCA is encodable in BIL fragment.

▶ Idea. Careful encoding of “Reachability Certificates” to BIL- Similar to previous
encoding!

Theorem

The reachability, Büchi, coBüchi, and safety parameter synthesis problems for SOCA are
all decidable in N2EXP. The LTL synthesis problem for SOCA is decidable in N3EXP.

▶ Restrict to Parametric Tests & Constant Updates: synthesis is in PSPACE.
▶ Idea. Reduction to Alternating 2-way automata (using idea from Bollig et.al’19)
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Conclusion

LTL Reachability Safety Büchi coBüchi

Lower bound PSPACE-hard coNP-hard — NPNP-hard —

Upper bound in N3EXP — in N2EXP —

Summary.

▶ BIL: largest known decidable fragment of one alternation PAD!

▶ Parameter Synthesis for SOCA is decidable!

Open Questions.

▶ Exact lower bounds: both for BIL & Synthesis problems!

▶ BIL to Synthesis: the opposite side reduction?
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Thank you for your attention!

Ritam Raha 27/27


	Synthesis Problems for One-Counter Automata
	Presburger Arithmetic with Divisibility
	Encoding Synthesis Problems into PAD
	Going back to logic: BIL

