

Revisiting Parameter Synthesis for One-Counter Automata

Ritam Raha 1,2

(Joint work with Guillermo Alberto Perez¹)

¹University of Antwerp, Antwerp, Belgium

²LaBRI, Université de Bordeaux, France

OFCOURSE talk series, MPI-SWS, Germany

Universiteit Antwerpen

Using the control flow graph

1	$\mathbf{x} = 0$
2	i = 0
3	i += x
4	while i >= 0:
5	if i == 0:
6	<pre>print("Hello world!")</pre>
7	if i == 1:
8	<pre>print("Lockdown = pain")</pre>
9	if i == 2:
10	<pre>print("P=NP!")</pre>
11	if i >= 3:
12	assert(False)
13	i -= 1
14	# end program

Using the control flow graph

1	$\mathbf{x} = 0$
2	i = 0
3	i += x
4	while i >= 0:
5	if i == 0:
6	<pre>print("Hello world!")</pre>
7	if i == 1:
8	<pre>print("Lockdown = pain")</pre>
9	if i == 2:
10	<pre>print("P=NP!")</pre>
11	if i >= 3:
12	assert(False)
13	i -= 1
14	# end program

Extending the CFG with a counter

1	$\mathbf{x} = 0$
2	i = 0
3	i += x
4	while i >= 0:
5	if i == 0:
6	<pre>print("Hello world!")</pre>
7	if i == 1:
8	<pre>print("Lockdown = pain")</pre>
9	if i == 2:
10	<pre>print("P=NP!")</pre>
11	if i >= 3:
12	assert(False)
13	i -= 1
14	# end program

Parametric one-counter automata

1	def	<pre>funprint(x):</pre>
2		i = 0
3		i += x
4		while i >= 0:
5		if i == 0:
6		<pre>print("Hello world!")</pre>
7		if i == 1:
В		<pre>print("Lockdown = pain")</pre>
9		if i == 2:
C		<pre>print("P=NP!")</pre>
1		if i >= 3:
2		assert(False)
3		i -= 1
4		# end program

Parametric one-counter automata

1	<pre>def funprint(x):</pre>
2	i = 0
3	i += x
4	while i >= 0:
5	if i == 0:
6	<pre>print("Hello world!")</pre>
7	if i == 1:
8	<pre>print("Lockdown = pain")</pre>
9	if i == 2:
10	<pre>print("P=NP!")</pre>
11	if i >= 3:
12	assert(False)
13	i -= 1
14	<pre># end program</pre>

Ritam Raha 4/27

Synthesis Problems for One-Counter Automata

Presburger Arithmetic with Divisibility

Encoding Synthesis Problems into PAD

Going back to logic: BIL

Succinct OCA with Parameters

 $\mathcal{A} = (Q, q_0, T, \delta, X)$, where $\delta : T \to Op$ with Op the union of

Succinct OCA with Parameters

 $\mathcal{A} = (Q, q_0, T, \delta, X)$, where $\delta : T \to Op$ with Op the union of

► $CU := \{+a, -a : a \in \mathbb{N}\}, \ CT := \{=a, \ge a : a \in \mathbb{N}\}$

Succinct OCA with Parameters

 $\mathcal{A} = (Q, q_0, T, \delta, X)$, where $\delta : T \to Op$ with Op the union of

►
$$CU := \{+a, -a : a \in \mathbb{N}\}, CT := \{=a, \ge a : a \in \mathbb{N}\}$$

▶ $PU := \{+x, -x : x \in X\}, PT := \{=x, \ge x : x \in X\}$

Synthesis problems

Definition (Parameter-value synthesis)

Is there some valuation $V: X \to \mathbb{N}$ such that all (infinite) runs of \mathcal{A} satisfy a given ω -regular property?

	LTL	Re	eachability	Safety	Büchi	coBüchi
Lower bound	PSPACE-hard	coNP-hard		— NP ^{NP} -hard —		
Upper bound	in N3EXP		— in N2EXP —			

Haase-Lechner approach via Logic

Logical formula: $x_1 \ge 0 \land x_1 \ge x_2 \land 2|x_1 - x_2$

Presburger Arithmetic with divisibility!

Synthesis Problems for One-Counter Automata

Presburger Arithmetic with Divisibility

Encoding Synthesis Problems into PAD

Going back to logic: BIL

• Presburger arithmetic (PA) = $FO(\mathbb{Z}, 0, 1, +, <)$

Presburger arithmetic with divisibility (PAD)

• Presburger arithmetic (PA) = $FO(\mathbb{Z}, 0, 1, +, <)$

▶ Presburger arithmetic with divisibility (PAD) = PA + | ($a \mid b \iff \exists c \in \mathbb{Z} : b = ac$)

Presburger arithmetic with divisibility (PAD)

- Presburger arithmetic (PA) = $FO(\mathbb{Z}, 0, 1, +, <)$
- ▶ Presburger arithmetic with divisibility (PAD) = PA + | (a | b \iff \exists c \in \mathbb{Z} : b = ac)

Theorem (Robinson'49, Lipshitz'81)

Full PAD is undecidable; one alternation suffices for undecidability.

Presburger arithmetic with divisibility (PAD)

- Presburger arithmetic (PA) = $FO(\mathbb{Z}, 0, 1, +, <)$
- ▶ Presburger arithmetic with divisibility (PAD) = PA + | (a | b \iff \exists c \in \mathbb{Z} : b = ac)

Theorem (Robinson'49, Lipshitz'81)

Full PAD is undecidable; one alternation suffices for undecidability.

Theorem (Lipshitz'78, Lechner-Ouaknine-Worrell'15)

The existential fragment of PAD (EPAD) is decidable and in NEXP.

Restriction: $\forall \exists_R PAD$

∀∃_RPAD = ∀x₁...∀x_n∃y₁...∃y_m.φ(**x**, **y**)
in φ, divisibilities of the form f(**x**) | g(**x**, **y**)

6

Restriction: $\forall \exists_R PAD$

- $\blacktriangleright \forall \exists_{R} \mathsf{PAD} = \forall x_1 \dots \forall x_n \exists y_1 \dots \exists y_m. \varphi(\mathbf{x}, \mathbf{y})$
 - in φ , divisibilities of the form $f(\mathbf{x}) \mid g(\mathbf{x}, \mathbf{y})$
- ► $\forall \exists_R \mathsf{PAD}^+ = \forall \exists_R \mathsf{PAD}$ with \neg not allowed before divisibility
 - ► A negation normal form where | cannot be negated

6

Restriction: $\forall \exists_R PAD$

- $\blacktriangleright \forall \exists_R \mathsf{PAD} = \forall x_1 \dots \forall x_n \exists y_1 \dots \exists y_m. \varphi(\mathbf{x}, \mathbf{y})$
 - in φ , divisibilities of the form $f(\mathbf{x}) \mid g(\mathbf{x}, \mathbf{y})$
- ► $\forall \exists_R \mathsf{PAD}^+ = \forall \exists_R \mathsf{PAD}$ with \neg not allowed before divisibility
 - ► A negation normal form where | cannot be negated

Claim (Bozga-losif'05, Lechner'15)

The synthesis problems for SOCAP are decidable via an encoding into $\forall \exists_R PAD^+$.

Synthesis Problems for One-Counter Automata

Presburger Arithmetic with Divisibility

Encoding Synthesis Problems into PAD

Going back to logic: BIL

What we need?

Formulas $\varphi(\mathbf{x})$ such that $V: X \to \mathbb{N}$ satisfies φ iff \mathcal{A} has a V-run reaching t from s.

What we need?

Formulas $\varphi(\mathbf{x})$ such that $V: X \to \mathbb{N}$ satisfies φ iff \mathcal{A} has a V-run reaching t from s.

Witness or Certificates (Reachability Certificates)

What we need?

Formulas $\varphi(\mathbf{x})$ such that $V: X \to \mathbb{N}$ satisfies φ iff \mathcal{A} has a V-run reaching t from s.

Witness or Certificates (Reachability Certificates) : three types

What we need?

Formulas $\varphi(\mathbf{x})$ such that $V: X \to \mathbb{N}$ satisfies φ iff \mathcal{A} has a V-run reaching t from s.

Witness or Certificates (Reachability Certificates) : three types

- no positive cycles (type 1)
- ▶ begins with a positive cycle and ends with a negative cycle (type 2)
- no negative cycles (type 3)

What we need?

Formulas $\varphi(\mathbf{x})$ such that $V: X \to \mathbb{N}$ satisfies φ iff \mathcal{A} has a V-run reaching t from s.

Witness or Certificates (Reachability Certificates) : three types

- no positive cycles (type 1)
- ▶ begins with a positive cycle and ends with a negative cycle (type 2)
- no negative cycles (type 3)

Theorem (Haase et. al. '09)

If $(q, c) \rightsquigarrow (q', c')$ without zero-test, then $(q, c) \xrightarrow{\pi_1 \pi_2 \pi_3}$ such that, π_1, π_2 and π_3 are type 1, type 2 and type 3 reachability certificates.

What we need?

Formulas $\varphi(\mathbf{x})$ such that $V: X \to \mathbb{N}$ satisfies φ iff \mathcal{A} has a V-run reaching t from s.

Witness or Certificates (Reachability Certificates) : three types

- ▶ no positive cycles (type 1)
- ▶ begins with a positive cycle and ends with a negative cycle (type 2)
- no negative cycles (type 3)

Theorem (Haase et. al. '09)

If $(q, c) \rightsquigarrow (q', c')$ without zero-test, then $(q, c) \xrightarrow{\pi_1 \pi_2 \pi_3}$ such that, π_1, π_2 and π_3 are type 1, type 2 and type 3 reachability certificates.

Now what do we need?

PAD formulas that encodes certificates

Now what do we need?

PAD formulas that encodes certificates

$$\bigwedge_{q \notin \{s,t\}} \left(\sum_{p \in \mathcal{T}(\cdot,q)} f(p,q) = \sum_{r \in \mathcal{T}(q,\cdot)} f(q,r) \right)$$
(1)

Now what do we need?

PAD formulas that encodes certificates

$$(5)$$
 f^1 f^3 f^5 f^7

$$\bigwedge_{q \notin \{s,t\}} \left(\sum_{p \in \mathcal{T}(\cdot,q)} f(p,q) = \sum_{r \in \mathcal{T}(q,\cdot)} f(q,r) \right)$$
(1)

Theorem (Euler's theorem for digraphs)

There is an s-t path iff there is a valuation of the f_i such that

- the subgraph induced by the support and $\{(t, s)\}$ are strongly connected,
- it satisfies (1) and $\sum_{p \in T(\cdot,s)} f(p,s) \sum_{r \in T(s,\cdot)} f(s,r) = 1$.

A formula per subgraph

A formula per subgraph

Now $\varphi_{\text{flow}}(\mathbf{f})$ is a disjunction of the flow constraints over all subgraphs which satisfy the support condition.

A path is not a run

Not every path can be lifted to a run because:

- ▶ of equality tests,
- ▶ the lower-bound tests,
- the counter value cannot go negative

Flow Decomposition

We want $f_1, f_2, \ldots, f_{|Q|}$ such that $f = \sum_{i=1}^{|Q|} f_i$ and:

Flow Decomposition

We want $f_1, f_2, \ldots, f_{|Q|}$ such that $f = \sum_{i=1}^{|Q|} f_i$ and:

• f_i is a flow witnessing a $q_i - q_{i+1}$ path,

- We want $f_1, f_2, \ldots, f_{|Q|}$ such that $f = \sum_{i=1}^{|Q|} f_i$ and:
 - f_i is a flow witnessing a $q_i q_{i+1}$ path,
 - $f_j(p,q_i) = 0$ for all $i \leq j$ and all $(p,q_i) \in T$.

We want
$$f_1, f_2, \ldots, f_{|\mathcal{Q}|}$$
 such that $f = \sum_{i=1}^{|\mathcal{Q}|} f_i$ and:

- f_i is a flow witnessing a $q_i q_{i+1}$ path,
- $f_j(p,q_i) = 0$ for all $i \leq j$ and all $(p,q_i) \in T$.

We want
$$f_1, f_2, \ldots, f_{|\mathcal{Q}|}$$
 such that $f = \sum_{i=1}^{|\mathcal{Q}|} f_i$ and:

- f_i is a flow witnessing a $q_i q_{i+1}$ path,
- $f_j(p,q_i) = 0$ for all $i \leq j$ and all $(p,q_i) \in T$.

We want
$$f_1, f_2, \ldots, f_{|\mathcal{Q}|}$$
 such that $f = \sum_{i=1}^{|\mathcal{Q}|} f_i$ and:

- f_i is a flow witnessing a $q_i q_{i+1}$ path,
- $f_j(p,q_i) = 0$ for all $i \leq j$ and all $(p,q_i) \in T$.

We want
$$f_1, f_2, \ldots, f_{|\mathcal{Q}|}$$
 such that $f = \sum_{i=1}^{|\mathcal{Q}|} f_i$ and:

- f_i is a flow witnessing a $q_i q_{i+1}$ path,
- $f_j(p,q_i) = 0$ for all $i \leq j$ and all $(p,q_i) \in T$.

We want
$$f_1, f_2, \ldots, f_{|\mathcal{Q}|}$$
 such that $f = \sum_{i=1}^{|\mathcal{Q}|} f_i$ and:

- f_i is a flow witnessing a $q_i q_{i+1}$ path,
- $f_j(p,q_i) = 0$ for all $i \leq j$ and all $(p,q_i) \in T$.

We want
$$f_1, f_2, \ldots, f_{|\mathcal{Q}|}$$
 such that $f = \sum_{i=1}^{|\mathcal{Q}|} f_i$ and:

- f_i is a flow witnessing a $q_i q_{i+1}$ path,
- $f_j(p,q_i) = 0$ for all $i \leq j$ and all $(p,q_i) \in T$.

Flow Decomposition

We want
$$f_1, f_2, \ldots, f_{|\mathcal{Q}|}$$
 such that $f = \sum_{i=1}^{|\mathcal{Q}|} f_i$ and:

• f_i is a flow witnessing a $q_i - q_{i+1}$ path,

•
$$f_j(p,q_i) = 0$$
 for all $i \leq j$ and all $(p,q_i) \in T$.

type 1: No positive cycles

To check the path can be lifted to a run:

 $\bigwedge_{m=1}^{|Q|}\sum_{i=1}^m\sum_{t\in \mathcal{T}}f_i(t)\delta(t)\geq 0$

Weight formulas using divisibility

A formula per case (1, 2, 3)

Now $\varphi_{\text{weight}}(\mathbf{x}, \mathbf{f})$ is a disjunction of the weight constraints over all decompositions.

Weight constraints use multiplication! $\sum f_i x_i \ge 0$

Weight formulas using divisibility

A formula per case (1, 2, 3)

Now $\varphi_{\text{weight}}(\mathbf{x}, \mathbf{f})$ is a disjunction of the weight constraints over all decompositions.

Weight constraints use multiplication! $\sum f_i x_i \ge 0$

Divisibility to the rescue

Replace f_X with a product variable z_{f_X} :

$$(x_i \mid z_{f_i x_i}) \land (x_i > 0 \leftrightarrow z_{f_i x_i} > 0) \land \left(\sum z_{f_i x_i} \ge 0\right)$$

Final PAD encoding

A formula per case

For each case, we get formulas like the following:

$$arphi(\mathbf{x}) \equiv \exists z_1 z_2 \cdots \bigvee_{\mathsf{subgraphs}} \bigwedge_{i \in I} (g_i(\mathbf{x}) \mid h_i(\mathbf{z})) \land arphi_{nopos}(\mathbf{x}) \land \mathbf{x}, \mathbf{z} \ge \mathbf{0}$$

decomp

Final PAD encoding

A formula per case

For each case, we get formulas like the following:

$$\varphi(\mathbf{x}) \equiv \exists z_1 z_2 \cdots \bigvee_{\text{subgraphs } i \in I} \bigwedge (g_i(\mathbf{x}) \mid h_i(\mathbf{z})) \land \varphi_{nopos}(\mathbf{x}) \land \mathbf{x}, \mathbf{z} \ge \mathbf{0}$$

subgraphs i∈I decomp

The safety synthesis problem

- Positive answer if $\forall x. \Phi(x)$ is false
- $\forall \mathbf{x}. \Phi(\mathbf{x})$ is a sentence in $\forall \exists_R \mathsf{PAD}^+$

Synthesis Problems for One-Counter Automata

Presburger Arithmetic with Divisibility

Encoding Synthesis Problems into PAD

Going back to logic: BIL

Restriction: $\forall \exists_R PAD$

- $\blacktriangleright \forall \exists_R \mathsf{PAD} = \forall x_1 \dots \forall x_n \exists y_1 \dots \exists y_m. \varphi(\mathbf{x}, \mathbf{y})$
 - in φ , divisibilities of the form $f(\mathbf{x}) \mid g(\mathbf{x}, \mathbf{y})$
- ► $\forall \exists_R \mathsf{PAD}^+ = \forall \exists_R \mathsf{PAD}$ with \neg not allowed before divisibility
 - ► A negation normal form where | cannot be negated

Claim (Bozga-losif'05, Lechner'15)

The synthesis problems for SOCAP are decidable via an encoding into $\forall \exists_R PAD^+$.

Theorem (Bozga-losif'05)

 $\forall \exists_R PAD \text{ is undecidable.}$

Theorem (Bozga-losif'05)

 $\forall \exists_{R} PAD \text{ is undecidable.}$

Idea: LCM \Rightarrow Square (x^2) \Rightarrow Multiplication

Theorem (Bozga-losif'05)

 $\forall \exists_{R} PAD \text{ is undecidable.}$

Idea: LCM \Rightarrow Square (x^2) \Rightarrow Multiplication

 $\blacktriangleright \forall \exists_R \mathsf{PAD}^+ \equiv \forall \exists_R \mathsf{PAD} :$

Theorem (Bozga-losif'05)

 $\forall \exists_R PAD \text{ is undecidable.}$

Idea: LCM \Rightarrow Square (x^2) \Rightarrow Multiplication

 $\blacktriangleright \forall \exists_R \mathsf{PAD}^+ \equiv \forall \exists_R \mathsf{PAD} :$

 $\neg(a \mid b) \iff \exists q \exists r(b = aq + r) \land (0 < r < b)$

Theorem (Bozga-losif'05)

 $\forall \exists_R PAD \text{ is undecidable.}$

Idea: LCM \Rightarrow Square (x^2) \Rightarrow Multiplication

 $\blacktriangleright \forall \exists_R \mathsf{PAD}^+ \equiv \forall \exists_R \mathsf{PAD} :$

$$\neg(a \mid b) \iff \exists q \exists r(b = aq + r) \land (0 < r < b)$$

A stronger restriction of $\forall \exists_R PAD$

 $\blacktriangleright \forall \exists_R \mathsf{PAD} = \forall x_1 \dots \forall x_n \exists y_1 \dots \exists y_m, \varphi(\mathbf{x}, \mathbf{z}) \text{ with divisibilities } f(\mathbf{x}) \mid g(\mathbf{x}, \mathbf{y})$

A stronger restriction of $\forall \exists_R PAD$

- $\blacktriangleright \forall \exists_R \mathsf{PAD} = \forall x_1 \dots \forall x_n \exists y_1 \dots \exists y_m, \varphi(\mathbf{x}, \mathbf{z}) \text{ with divisibilities } f(\mathbf{x}) \mid g(\mathbf{x}, \mathbf{y})$
- ▶ The Bozga-losif-Lechner (BIL) fragment of $\forall \exists_R PAD$:

$$\forall x_1 \dots \forall x_n \in \mathbb{N}, \ \exists y_1 \dots \exists y_m \bigvee_{i \in I} \bigwedge_{j \in J_i} \left(\underline{f_j(\mathbf{x}) \mid g_j(\mathbf{x}, \mathbf{y})} \land f_j(x) > 0 \right) \land \underline{\varphi_i(\mathbf{x})} \land \mathbf{y} \ge \mathbf{0}$$

A stronger restriction of $\forall \exists_R PAD$

- $\blacktriangleright \forall \exists_R \mathsf{PAD} = \forall x_1 \dots \forall x_n \exists y_1 \dots \exists y_m, \varphi(\mathbf{x}, \mathbf{z}) \text{ with divisibilities } f(\mathbf{x}) \mid g(\mathbf{x}, \mathbf{y})$
- ▶ The Bozga-losif-Lechner (BIL) fragment of $\forall \exists_R PAD$:

$$\forall x_1 \ldots \forall x_n \in \mathbb{N}, \ \exists y_1 \ldots \exists y_m \bigvee_{i \in I} \bigwedge_{j \in J_i} \left(\underline{f_j(\mathbf{x}) \mid g_j(\mathbf{x}, \mathbf{y})} \land f_j(x) > 0 \right) \land \underline{\varphi_i(\mathbf{x})} \land \mathbf{y} \ge \mathbf{0}$$

Theorem

The BIL fragment is decidable and in coN2EXP.

A stronger restriction of $\forall \exists_R PAD$

- $\blacktriangleright \forall \exists_R \mathsf{PAD} = \forall x_1 \dots \forall x_n \exists y_1 \dots \exists y_m, \varphi(\mathbf{x}, \mathbf{z}) \text{ with divisibilities } f(\mathbf{x}) \mid g(\mathbf{x}, \mathbf{y})$
- ▶ The Bozga-losif-Lechner (BIL) fragment of $\forall \exists_R PAD$:

$$\forall x_1 \ldots \forall x_n \in \mathbb{N}, \ \exists y_1 \ldots \exists y_m \bigvee_{i \in I} \bigwedge_{j \in J_i} \left(\underline{f_j(\mathbf{x}) \mid g_j(\mathbf{x}, \mathbf{y})} \land f_j(x) > 0 \right) \land \underline{\varphi_i(\mathbf{x})} \land \mathbf{y} \ge \mathbf{0}$$

Theorem

The BIL fragment is decidable and in coN2EXP.

Idea. Quantifier elimination (Generalized Chinese Remainder Theorem!) - Similar idea to Bozga & Iosif's work!

BIL is decidable!

Theorem (Generalized CRT)

Let $m_i \in \mathbb{N}_{>0}$, $a_i, r_i \in \mathbb{Z}$ for $1 \leq i \leq n$. Then,

$$\exists x \in \mathbb{Z}, \ \bigwedge_{i=1}^n m_i \mid (a_i x - r_i) \ \Leftrightarrow \bigwedge_{1 \leq i,j \leq n} \gcd(a_i m_j, a_j m_i) \mid (a_i r_j - a_j r_i) \land \bigwedge_{i=1}^n \gcd(a_i, m_i) \mid r_i$$

The solution for x is unique modulo LCM (m'_1, \ldots, m'_n) , where $m'_i = \frac{m_i}{\gcd(a_i, m_i)}$.

BIL is decidable!

Example:

$\forall x \exists y \bigvee_{i \in I} \bigwedge_{j \in J_i} (f_j(x) \mid (\beta_j(x) + \alpha_j(y)) \land f_j(x) > 0) \land \varphi_i(x) \land y \ge 0 \Rightarrow$

BIL is decidable!

Example:

 $\forall x \exists y \bigvee \bigwedge (f_j(x) \mid (\beta_j(x) + \alpha_j(y)) \land f_j(x) > 0) \land \varphi_j(x) \land y \ge 0 \Rightarrow$ $i \in I$ $i \in J_i$ $\forall x \bigvee_{i \in I} \left(\exists y \bigwedge_{j \in J_i} (f_j(x) \mid (\alpha_j(y) - (-\beta_j(x))) \land y \ge 0 \right) \land \varphi_i'(x) \Rightarrow$ $\forall x \bigvee_{i \in I} \left(\bigwedge_{j,k \in J_i} \gcd(\alpha_k f_j(x), \alpha_j f_k(x)) \mid (\alpha_j \beta_k(x) - \alpha_k \beta_j(x)) \land \bigwedge_{j \in J_i} \gcd(\alpha_j, f_j(x)) \mid \beta_j(x) \right)$ $\wedge \varphi'_i(x)$

BIL is decidable!

Example:

 $\forall x \exists y \bigvee \bigwedge (f_j(x) \mid (\beta_j(x) + \alpha_j(y)) \land f_j(x) > 0) \land \varphi_j(x) \land y \ge 0 \Rightarrow$ $i \in I$ $i \in J_i$ $\forall x \bigvee_{i \in I} \left(\exists y \bigwedge_{j \in J_i} (f_j(x) \mid (\alpha_j(y) - (-\beta_j(x))) \land y \ge 0 \right) \land \varphi_i'(x) \Rightarrow$ $\forall x \bigvee_{i \in I} \left(\bigwedge_{j,k \in J_i} \gcd(\alpha_k f_j(x), \alpha_j f_k(x)) \mid (\alpha_j \beta_k(x) - \alpha_k \beta_j(x)) \land \bigwedge_{j \in J_i} \gcd(\alpha_j, f_j(x)) \mid \beta_j(x) \right)$ $\wedge \varphi'_i(x)$

Synthesis of SOCA is encodable in BIL fragment.

- Synthesis of SOCA is encodable in BIL fragment.
 - Idea. Careful encoding of "Reachability Certificates" to BIL- Similar to previous encoding!

- Synthesis of SOCA is encodable in BIL fragment.
 - Idea. Careful encoding of "Reachability Certificates" to BIL- Similar to previous encoding!

Theorem

The reachability, Büchi, coBüchi, and safety parameter synthesis problems for SOCA are all decidable in **N2EXP**. The LTL synthesis problem for SOCA is decidable in **N3EXP**.

- Synthesis of SOCA is encodable in BIL fragment.
 - Idea. Careful encoding of "Reachability Certificates" to BIL- Similar to previous encoding!

Theorem

The reachability, Büchi, coBüchi, and safety parameter synthesis problems for SOCA are all decidable in **N2EXP**. The LTL synthesis problem for SOCA is decidable in **N3EXP**.

Restrict to Parametric Tests & Constant Updates: synthesis is in PSPACE.

- Synthesis of SOCA is encodable in BIL fragment.
 - Idea. Careful encoding of "Reachability Certificates" to BIL- Similar to previous encoding!

Theorem

The reachability, Büchi, coBüchi, and safety parameter synthesis problems for SOCA are all decidable in **N2EXP**. The LTL synthesis problem for SOCA is decidable in **N3EXP**.

- Restrict to Parametric Tests & Constant Updates: synthesis is in PSPACE.
 - ▶ Idea. Reduction to Alternating 2-way automata (using idea from Bollig et.al'19)

Conclusion

	LTL	Reachability	Safety	Büchi	coBüchi	
Lower bound	PSPACE-hard	coNP-hard	coNP-hard — NP ^{NP} -hard —			
Upper bound	in N3EXP	-	— in N2EXP —			

Conclusion

	LTL	Reachability	v Safety	Büchi	coBüchi		
Lower bound	PSPACE-hard	coNP-hard	P-hard — NP ^{NP} -hard —				
Upper bound	in N3EXP		— in N2EXP —				

Summary.

▶ BIL: largest known decidable fragment of one alternation PAD!

Conclusion

	LTL	Reachability	Safety	Büchi	coBüchi		
Lower bound	PSPACE-hard	coNP-hard	— NP^{NP} -hard —				
Upper bound	in N3EXP	-	— in N2EXP —				

Summary.

- ▶ BIL: largest known decidable fragment of one alternation PAD!
- ► Parameter Synthesis for SOCA is decidable!

Conclusion

	LTL	Reachability		Safety	Büchi	coBüchi	
Lower bound	PSPACE-hard	coNP-hard		— NP^{NP} -hard —			
Upper bound	in N3EXP		— in N2EXP —				

Summary.

- ▶ BIL: largest known decidable fragment of one alternation PAD!
- Parameter Synthesis for SOCA is decidable!

Open Questions.

► Exact lower bounds: both for BIL & Synthesis problems!

Conclusion

	LTL	Reachability		Safety	Büchi	coBüchi	
Lower bound	PSPACE-hard	coNP-hard		— NP^{NP} -hard —			
Upper bound	in N3EXP		— in N2EXP —				

Summary.

- ▶ BIL: largest known decidable fragment of one alternation PAD!
- Parameter Synthesis for SOCA is decidable!

Open Questions.

- ► Exact lower bounds: both for BIL & Synthesis problems!
- BIL to Synthesis: the opposite side reduction?

Thank you for your attention!