Highlights 2022

of Logic, Games and Automata
Paris, June 28-July $1^{\text {st }}, 2022$

Scalable Anytime Algorithms for Learning Fragments of Linear Temporal Logic (SCARLET)

Ritam Raha Rajarshi Roy Nathanaël Fijalkow Daniel Neider

Appeared at TACAS'22

Explainable AI

Well, it looks too complicated

Explainable AI

Well, it looks too complicated
Goal: Learn simple (human interpretable) models by observing complex systems

Robot Motion-Planning

SUB-OPTIMAL, BUTANING MAY BE

Robot Motion-Planning

Positive

Negative

Robot Motion-Planning

Positive

"HIS PATH-PLANNING MAY BE
SUB-OPTIMAL, BUT IT'S GOT FLAIR."
$A \wedge$ Finally B

LTL as a descriptive model

Linear Temporal Logic
Eg. Globally, Finally, Next
Syntax:

$$
\varphi::=p \in \Sigma|\neg p| \varphi_{1} \vee \varphi_{2}\left|\varphi_{1} \wedge \varphi_{2}\right| \mathbf{X} \varphi|\mathbf{F} \varphi| \mathbf{G} \varphi \mid \varphi_{1} \mathbf{U} \varphi_{2}
$$

LTL as a descriptive model

Linear Temporal Logic on finite words (Vardi \& Giacomo '13)
Eg. Globally, Finally, Next
Syntax:

$$
\varphi::=p \in \Sigma|\neg p| \varphi_{1} \vee \varphi_{2}\left|\varphi_{1} \wedge \varphi_{2}\right| \mathbf{X} \varphi|\mathbf{F} \varphi| \mathbf{G} \varphi \mid \varphi_{1} \mathbf{U} \varphi_{2}
$$

LTL as a descriptive model

Linear Temporal Logic on finite words (Vardi \& Giacomo '13)
Eg. Globally, Finally, Next
Syntax:

$$
\varphi::=p \in \Sigma|\neg p| \varphi_{1} \vee \varphi_{2}\left|\varphi_{1} \wedge \varphi_{2}\right| \mathbf{X} \varphi|\mathbf{F} \varphi| \mathbf{G} \varphi \mid \mathbf{U}_{2}
$$

The fragment: $\underline{\operatorname{LTL}(F, X, G, \wedge, \vee)}$

The learning problem

LTL Learning on Finite Words
Input: \quad A set of positive words P \& negative words N

The learning problem

LTL Learning on Finite Words
Input: \quad A set of positive words P \& negative words N

The learning problem

LTL Learning on Finite Words
Input: \quad A set of positive words P \& negative words N
Question: Find a minimal LTL formula φ such that, $\forall w \in P, w \vDash \varphi$ and $\forall w \in N, w \not \vDash \varphi$?

State-of-the-Art

Theorem (Fijalkow \& Lagarde '21)

The learning problem for the fragments of $\operatorname{LTL}: \operatorname{LTL}(X, \wedge), \operatorname{LTL}(F, \wedge)$ and $\operatorname{LTL}(F, X, \wedge, \vee)$ is NP-complete.

State-of-the-Art

Theorem (Fijalkow \& Lagarde '21)

The learning problem for the fragments of $\operatorname{LTL}: \operatorname{LTL}(X, \wedge), \operatorname{LTL}(F, \wedge)$ and $\operatorname{LTL}(F, X, \wedge, \vee)$ is NP-complete.

Existing approaches:

- SAT-Solvers - FLIE (Neider \& Gavran '18)
- SyGuS solvers - SYSLITE (Arif et al. '20)

State-of-the-Art

Theorem (Fijalkow \& Lagarde '21)

The learning problem for the fragments of $\operatorname{LTL}: \operatorname{LTL}(X, \wedge), \operatorname{LTL}(F, \wedge)$ and $\operatorname{LTL}(F, X, \wedge, \vee)$ is NP-complete.

Existing approaches:

- SAT-Solvers - FLIE (Neider \& Gavran '18)
- SyGuS solvers - SYSLITE (Arif et al. '20)

Overview

- For all LTL formulas of size k, check if separating.
- Increase k and repeat.

Towards Approximation

Towards Approximation

Overview.

- Extract LTL patterns of increasing complexity from sample (Technique used: Dynamic Programming)

Towards Approximation

Overview.

- Extract LTL patterns of increasing complexity from sample (Technique used: Dynamic Programming)
- Generate their Boolean combinations to find the (minimal) formula by solving Boolean Set Cover problem (Technique used: Greedy approximation or Decision Tree)

Finding LTL patterns

Sample S

Positive Words pqqp
 qqpp

Negative Words qqqq
ppqp

Idea:

Candidate:
Formula:

Finding LTL patterns

Sample S

Positive Words
pqqp
qqpp

Negative Words
qqqq
ppqp

Idea: Find separating patterns with intervals
Candidate:
Formula:

Finding LTL patterns

Sample S

Positive Words

qqpp

Negative Words
qqqq
ppqp

Idea: Find separating patterns with intervals

Candidate: $\quad(1, \mathrm{q},>0, \mathrm{p})$
Formula:

Finding LTL patterns

Sample S

Positive Words
pqqp
qqpp

Negative Words
qqqq X
ppqp \boldsymbol{X}

Idea: Find separating patterns with intervals

Candidate: $\quad(1, \mathrm{q},>0, \mathrm{p})$
Formula:

Finding LTL patterns

Sample S

Positive Words
pqqp
qqpp

Negative Words
qqqq X
ppqp \boldsymbol{X}

Idea: Find separating patterns with intervals

Candidate: $\quad(1, \mathrm{q},>0, \mathrm{p})$
Formula: $\mathrm{X}(\mathrm{q} \wedge \mathrm{Fp})$

Directed LTL

LTL patterns that arise from the following grammar:

$$
\varphi:=X^{n} p \quad\left|\quad F X^{n} p \quad\right| \quad X^{n}(p \wedge \varphi) \quad \mid \quad F X^{n}(p \wedge \varphi),
$$

Theorem

The boolean combination of dLTL formulas is as expressive as $\operatorname{LTL}(F, X, \wedge, \vee)$

Directed LTL

LTL patterns that arise from the following grammar:

$$
\varphi:=X^{n} p \quad\left|\quad F X^{n} p \quad\right| \quad X^{n}(p \wedge \varphi) \quad \mid \quad F X^{n}(p \wedge \varphi),
$$

Theorem

The boolean combination of dLTL formulas is as expressive as $\operatorname{LTL}(F, X, \wedge, \vee)$

Dual: $\neg \mathrm{F} \neg \varphi=\mathrm{G} \varphi$: swap positive and negative words!

Directed LTL

LTL patterns that arise from the following grammar:

$$
\varphi:=X^{n} p \quad\left|\quad F X^{n} p \quad\right| \quad X^{n}(p \wedge \varphi) \quad \mid \quad F X^{n}(p \wedge \varphi),
$$

Theorem

The boolean combination of dLTL formulas is as expressive as $\operatorname{LTL}(F, X, \wedge, \vee)$

Dual: $\neg \mathrm{F} \neg \varphi=\mathrm{G} \varphi$: swap positive and negative words!

Boolean Set Cover

Boolean Set Cover

Problem: Find the minimal boolean combination of formulas that separates the sample

Boolean Set Cover

Problem: Find the minimal boolean combination of formulas that separates the sample

Sol: $\left(\varphi_{1} \wedge \varphi_{2}\right) \vee \varphi_{3}$

Boolean Set Cover

- A similar greedy approximation algorithm to classical set cover

Boolean Set Cover

- A similar greedy approximation algorithm to classical set cover
- Another approach: Decision Trees

Advantages of our approach

- Anytime algorithm

Advantages of our approach

- Anytime algorithm
- Optimized according to the Sample

Advantages of our approach

- Anytime algorithm
- Optimized according to the Sample
- Noisy Data Setting

SCARLET

Future Work/ Open Questions

Future Work/ Open Questions

- Exact approximation factor of the algorithm

Future Work/ Open Questions

- Exact approximation factor of the algorithm
- Capture more expressive power: learn formulas with U-operator

Future Work/ Open Questions

- Exact approximation factor of the algorithm
- Capture more expressive power: learn formulas with U-operator
- Towards real-valued traces: learn formulas in STL

A STUDY IN SCARLET

Arthur Conan Doyle
R.R.N.D.' 22

Thank you!

