Highlights 2022 of Logic, Games and Automata Paris, June 28–July 1st, 2022

Scalable Anytime Algorithms for Learning Fragments of Linear Temporal Logic (SCARLET)

Ritam Raha Rajarshi Roy Nathanaël Fijalkow Daniel Neider

Appeared at TACAS'22

Explainable AI

Explainable AI

Goal: Learn simple (human interpretable) models by observing complex systems

Robot Motion-Planning

R.O.B.O.T. Comics

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

R.O.B.O.T. Comics

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

Positive

Negative

R.O.B.O.T. Comics

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

Positive

Negative

 $A \wedge \underline{\mathsf{Finally}} B$

LTL as a descriptive model

Linear Temporal Logic

Eg. Globally, Finally, Next

Syntax:

 $\varphi ::= p \in \Sigma \mid \neg p \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2 \mid \mathbf{X} \varphi \mid \mathbf{F} \varphi \mid \mathbf{G} \varphi \mid \varphi_1 \mathbf{U} \varphi_2$

LTL as a descriptive model

Linear Temporal Logic <u>on finite words</u> (Vardi & Giacomo '13) Eg. *Globally, Finally, Next*

Syntax:

 $\varphi ::= p \in \Sigma \mid \neg p \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2 \mid \mathbf{X}\varphi \mid \mathbf{F}\varphi \mid \mathbf{G}\varphi \mid \varphi_1 \mathbf{U}\varphi_2$

LTL as a descriptive model

Linear Temporal Logic <u>on finite words</u> (Vardi & Giacomo '13) Eg. *Globally, Finally, Next*

Syntax:

 $\varphi ::= p \in \Sigma \mid \neg p \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2 \mid \mathbf{X}\varphi \mid \mathbf{F}\varphi \mid \mathbf{G}\varphi \mid \varphi_1 \mathbf{U}\varphi_2$

The fragment: LTL(F, X, G, \land , \lor)

The learning problem

Input: A set of positive words P & negative words N

The learning problem

The learning problem

	— LTL LEARNING ON FINITE WORDS —
Input:	A set of positive words P & negative words N
Question:	Find a minimal LTL formula φ such that, $\forall w \in P, w \models \varphi$ and $\forall w \in N, w \not\models \varphi$?

State-of-the-Art

Theorem (Fijalkow & Lagarde '21)

The learning problem for the fragments of LTL: $LTL(X, \wedge)$, $LTL(F, \wedge)$ and $LTL(F, X, \wedge, \vee)$ is NP-complete.

State-of-the-Art

Theorem (Fijalkow & Lagarde '21)

The learning problem for the fragments of LTL: $LTL(X, \wedge)$, $LTL(F, \wedge)$ and $LTL(F, X, \wedge, \vee)$ is NP-complete.

Existing approaches:

- SAT-Solvers FLIE (Neider & Gavran '18)
- SyGuS solvers SYSLITE (Arif et al. '20)

State-of-the-Art

Theorem (Fijalkow & Lagarde '21)

The learning problem for the fragments of LTL: $LTL(X, \wedge)$, $LTL(F, \wedge)$ and $LTL(F, X, \wedge, \vee)$ is NP-complete.

Existing approaches:

- SAT-Solvers FLIE (Neider & Gavran '18)
- ► SyGuS solvers SYSLITE (Arif et al. '20)

Overview

- ► For all LTL formulas of size *k*, check if separating.
- ▶ Increase *k* and repeat.

Towards Approximation

Towards Approximation

Overview.

 Extract LTL patterns of increasing complexity from sample (Technique used: Dynamic Programming)

Towards Approximation

Overview.

- Extract LTL patterns of increasing complexity from sample (Technique used: Dynamic Programming)
- Generate their Boolean combinations to find the (minimal) formula by solving Boolean Set Cover problem (Technique used: Greedy approximation or Decision Tree)

Sample S

Positive Words

qqpp

Negative Words qqqq ppqp

Idea:

Candidate:

Sample S

Positive Words pqqp qqpp Negative Words qqqq ppqp

Idea: Find separating patterns with intervals

Candidate:

Positive Words pqqp √ qqpp √ Negative Words qqqq ppqp

Idea: Find separating patterns with intervals

Candidate: (1,q,>0,p)

Positive Words pqqp √ qqpp √ Negative Words qqqq × ppqp ×

Idea: Find separating patterns with intervals

Candidate: (1,q,>0,p)

Positive Words pqqp √ qqpp √ Negative Words qqqq × ppqp ×

Idea: Find separating patterns with intervals

Candidate: (1,q,>0,p)

Formula: $X(q \land Fp)$

Directed LTL

LTL patterns that arise from the following grammar:

$$\varphi := X^n p \quad | \quad FX^n p \quad | \quad X^n(p \wedge \varphi) \quad | \quad FX^n(p \wedge \varphi),$$

Theorem

The boolean combination of dLTL formulas is as expressive as LTL(F, X, $\land, \lor)$

Directed LTL

LTL patterns that arise from the following grammar:

$$\varphi := X^n p \quad | \quad FX^n p \quad | \quad X^n(p \wedge \varphi) \quad | \quad FX^n(p \wedge \varphi),$$

Theorem

The boolean combination of dLTL formulas is as expressive as LTL(F, X, \land , \lor)

Dual: $\neg F \neg \varphi = G \varphi$: swap positive and negative words!

Directed LTL

LTL patterns that arise from the following grammar:

$$\varphi := X^n p \quad | \quad FX^n p \quad | \quad X^n(p \wedge \varphi) \quad | \quad FX^n(p \wedge \varphi),$$

Theorem

The <u>boolean combination</u> of dLTL formulas is as expressive as $LTL(F, X, \land, \lor)$

Dual: $\neg F \neg \varphi = G \varphi$: swap positive and negative words!

Problem: Find the <u>minimal boolean combination of formulas</u> that separates the sample

Problem: Find the <u>minimal boolean combination of formulas</u> that separates the sample

Sol: $(\varphi_1 \land \varphi_2) \lor \varphi_3$

► A similar greedy approximation algorithm to classical set cover

► A similar greedy approximation algorithm to classical set cover

► Another approach: Decision Trees

Advantages of our approach

Anytime algorithm

Advantages of our approach

Anytime algorithm

Optimized according to the Sample

Advantages of our approach

Anytime algorithm

- Optimized according to the Sample
- Noisy Data Setting

SCARLET

Exact approximation factor of the algorithm

- Exact approximation factor of the algorithm
- ► Capture more expressive power: learn formulas with U-operator

- Exact approximation factor of the algorithm
- ► Capture more expressive power: learn formulas with U-operator
- Towards real-valued traces: learn formulas in STL

Baker Street Classics SHERLOCK HOLMES

A STUDY IN SCARLET

Arthur Conan Doyle R.R.N.D.'22

Thank you!