
(Formal) Software Verification via Logic
(using One-Counter Automata)

Ritam Raha

October 21, 2022



1 Formal Verification

2 One-Counter Automata

3 Logic

4 Conclusion

2/18



1. Formal Verification

3/18



Motivation

1 ...

2

3 def dummy(x:int ,y:int):

4 z = 0

5 if x>0 & y>0:

6 z=x

7 return z

8 ...

9 # end program

How much testing needed to be done?

– Function Coverage: “dummy” has been called
once

– Statement Coverage: dummy(1,1)

– Branch Coverage: dummy(0,1), dummy(1,1)

– Condition Coverage... etc

What about codes that heavily depend on user inputs or outside inputs?

How do we know, we are not missing any critical corner cases?

How to prove your software is doing what it is supposed to do and nothing more!

“Program testing can be a very effective way to show the presence of bugs, but it is
hopelessly inadequate for showing their absence.” - E. Dijkstra

4/18



Motivation

1 ...

2

3 def dummy(x:int ,y:int):

4 z = 0

5 if x>0 & y>0:

6 z=x

7 return z

8 ...

9 # end program

How much testing needed to be done?

– Function Coverage: “dummy” has been called
once

– Statement Coverage: dummy(1,1)

– Branch Coverage: dummy(0,1), dummy(1,1)

– Condition Coverage... etc

What about codes that heavily depend on user inputs or outside inputs?

How do we know, we are not missing any critical corner cases?

How to prove your software is doing what it is supposed to do and nothing more!

“Program testing can be a very effective way to show the presence of bugs, but it is
hopelessly inadequate for showing their absence.” - E. Dijkstra

4/18



Motivation

1 ...

2

3 def dummy(x:int ,y:int):

4 z = 0

5 if x>0 & y>0:

6 z=x

7 return z

8 ...

9 # end program

How much testing needed to be done?

– Function Coverage: “dummy” has been called
once

– Statement Coverage: dummy(1,1)

– Branch Coverage: dummy(0,1), dummy(1,1)

– Condition Coverage... etc

What about codes that heavily depend on user inputs or outside inputs?

How do we know, we are not missing any critical corner cases?

How to prove your software is doing what it is supposed to do and nothing more!

“Program testing can be a very effective way to show the presence of bugs, but it is
hopelessly inadequate for showing their absence.” - E. Dijkstra

4/18



Motivation

1 ...

2

3 def dummy(x:int ,y:int):

4 z = 0

5 if x>0 & y>0:

6 z=x

7 return z

8 ...

9 # end program

How much testing needed to be done?

– Function Coverage: “dummy” has been called
once

– Statement Coverage: dummy(1,1)

– Branch Coverage: dummy(0,1), dummy(1,1)

– Condition Coverage... etc

What about codes that heavily depend on user inputs or outside inputs?

How do we know, we are not missing any critical corner cases?

How to prove your software is doing what it is supposed to do and nothing more!

“Program testing can be a very effective way to show the presence of bugs, but it is
hopelessly inadequate for showing their absence.” - E. Dijkstra

4/18



Motivation

1 ...

2

3 def dummy(x:int ,y:int):

4 z = 0

5 if x>0 & y>0:

6 z=x

7 return z

8 ...

9 # end program

How much testing needed to be done?

– Function Coverage: “dummy” has been called
once

– Statement Coverage: dummy(1,1)

– Branch Coverage: dummy(0,1), dummy(1,1)

– Condition Coverage... etc

What about codes that heavily depend on user inputs or outside inputs?

How do we know, we are not missing any critical corner cases?

How to prove your software is doing what it is supposed to do and nothing more!

“Program testing can be a very effective way to show the presence of bugs, but it is
hopelessly inadequate for showing their absence.” - E. Dijkstra

4/18



Motivation

1 ...

2

3 def dummy(x:int ,y:int):

4 z = 0

5 if x>0 & y>0:

6 z=x

7 return z

8 ...

9 # end program

How much testing needed to be done?

– Function Coverage: “dummy” has been called
once

– Statement Coverage: dummy(1,1)

– Branch Coverage: dummy(0,1), dummy(1,1)

– Condition Coverage... etc

What about codes that heavily depend on user inputs or outside inputs?

How do we know, we are not missing any critical corner cases?

How to prove your software is doing what it is supposed to do and nothing more!

“Program testing can be a very effective way to show the presence of bugs, but it is
hopelessly inadequate for showing their absence.” - E. Dijkstra

4/18



Motivation

1 ...

2

3 def dummy(x:int ,y:int):

4 z = 0

5 if x>0 & y>0:

6 z=x

7 return z

8 ...

9 # end program

How much testing needed to be done?

– Function Coverage: “dummy” has been called
once

– Statement Coverage: dummy(1,1)

– Branch Coverage: dummy(0,1), dummy(1,1)

– Condition Coverage... etc

What about codes that heavily depend on user inputs or outside inputs?

How do we know, we are not missing any critical corner cases?

How to prove your software is doing what it is supposed to do and nothing more!

“Program testing can be a very effective way to show the presence of bugs, but it is
hopelessly inadequate for showing their absence.” - E. Dijkstra

4/18



Motivation

1 ...

2

3 def dummy(x:int ,y:int):

4 z = 0

5 if x>0 & y>0:

6 z=x

7 return z

8 ...

9 # end program

How much testing needed to be done?

– Function Coverage: “dummy” has been called
once

– Statement Coverage: dummy(1,1)

– Branch Coverage: dummy(0,1), dummy(1,1)

– Condition Coverage... etc

What about codes that heavily depend on user inputs or outside inputs?

How do we know, we are not missing any critical corner cases?

How to prove your software is doing what it is supposed to do and nothing more!

“Program testing can be a very effective way to show the presence of bugs, but it is
hopelessly inadequate for showing their absence.” - E. Dijkstra

4/18



Motivation

1 ...

2

3 def dummy(x:int ,y:int):

4 z = 0

5 if x>0 & y>0:

6 z=x

7 return z

8 ...

9 # end program

How much testing needed to be done?

– Function Coverage: “dummy” has been called
once

– Statement Coverage: dummy(1,1)

– Branch Coverage: dummy(0,1), dummy(1,1)

– Condition Coverage... etc

What about codes that heavily depend on user inputs or outside inputs?

How do we know, we are not missing any critical corner cases?

How to prove your software is doing what it is supposed to do and nothing more!

“Program testing can be a very effective way to show the presence of bugs, but it is
hopelessly inadequate for showing their absence.” - E. Dijkstra

4/18



What can go wrong?

A bug in the code controlling the Therac-25 radiation therapy machine killed five
patients.: problem in code (race condition)

The software error of a MIM-104 Patriot resulting in failure to intercept an incoming
Iraqi Al Hussein missile, killing 28 Americans :
system clock drifted by one third of a second

AT&T telephone network outage resulting in 9 hrs of outage of US telephone
network: wrong interpretation of break statement in C.

A lot more at https://en.wikipedia.org/wiki/List_of_software_bugs

5/18

https://en.wikipedia.org/wiki/List_of_software_bugs


What can go wrong?

A bug in the code controlling the Therac-25 radiation therapy machine killed five
patients.: problem in code (race condition)

The software error of a MIM-104 Patriot resulting in failure to intercept an incoming
Iraqi Al Hussein missile, killing 28 Americans :
system clock drifted by one third of a second

AT&T telephone network outage resulting in 9 hrs of outage of US telephone
network: wrong interpretation of break statement in C.

A lot more at https://en.wikipedia.org/wiki/List_of_software_bugs

5/18

https://en.wikipedia.org/wiki/List_of_software_bugs


What can go wrong?

A bug in the code controlling the Therac-25 radiation therapy machine killed five
patients.: problem in code (race condition)

The software error of a MIM-104 Patriot resulting in failure to intercept an incoming
Iraqi Al Hussein missile, killing 28 Americans :
system clock drifted by one third of a second

AT&T telephone network outage resulting in 9 hrs of outage of US telephone
network: wrong interpretation of break statement in C.

A lot more at https://en.wikipedia.org/wiki/List_of_software_bugs

5/18

https://en.wikipedia.org/wiki/List_of_software_bugs


What can go wrong?

A bug in the code controlling the Therac-25 radiation therapy machine killed five
patients.: problem in code (race condition)

The software error of a MIM-104 Patriot resulting in failure to intercept an incoming
Iraqi Al Hussein missile, killing 28 Americans :
system clock drifted by one third of a second

AT&T telephone network outage resulting in 9 hrs of outage of US telephone
network: wrong interpretation of break statement in C.

A lot more at https://en.wikipedia.org/wiki/List_of_software_bugs

5/18

https://en.wikipedia.org/wiki/List_of_software_bugs


What can go wrong?

A bug in the code controlling the Therac-25 radiation therapy machine killed five
patients.: problem in code (race condition)

The software error of a MIM-104 Patriot resulting in failure to intercept an incoming
Iraqi Al Hussein missile, killing 28 Americans :
system clock drifted by one third of a second

AT&T telephone network outage resulting in 9 hrs of outage of US telephone
network: wrong interpretation of break statement in C.

A lot more at https://en.wikipedia.org/wiki/List_of_software_bugs

5/18

https://en.wikipedia.org/wiki/List_of_software_bugs


Formal Verification

Formal verification is the process of proving the correctness of intended algorithms underlying a system with
respect to a certain formal specification or property, using formal methods of mathematics.

6/18



Formal Verification

Formal verification is the process of proving the correctness of intended algorithms underlying a system with
respect to a certain formal specification or property, using formal methods of mathematics.

6/18



Formal Verification

Formal Models

– Finite State Machines

– Vector Addition Systems

– Timed Automata/ Hybrid Automata

– Markov Decision Processes

Requirements/Formal Specifications

– Reachability

– Safety

– Temporal Logic (LTL, CTL etc.)

Advantages of Formal Verification

Formally proving correctness and ensure safety

Significantly reduces the verification time

7/18



Formal Verification

Formal Models

– Finite State Machines

– Vector Addition Systems

– Timed Automata/ Hybrid Automata

– Markov Decision Processes

Requirements/Formal Specifications

– Reachability

– Safety

– Temporal Logic (LTL, CTL etc.)

Advantages of Formal Verification

Formally proving correctness and ensure safety

Significantly reduces the verification time

7/18



Formal Verification

Formal Models

– Finite State Machines

– Vector Addition Systems

– Timed Automata/ Hybrid Automata

– Markov Decision Processes

Requirements/Formal Specifications

– Reachability

– Safety

– Temporal Logic (LTL, CTL etc.)

Advantages of Formal Verification

Formally proving correctness and ensure safety

Significantly reduces the verification time

7/18



2. One-Counter Automata

8/18



Using the control flow graph (CFG)

1 skip = 2

2 retake = 3

3 retake += skip

4 while retake >= 0:

5 if retake == 3:

6 print("You get a reminder")

7 if retake == 4:

8 print("You get soft warning")

9 if retake == 5:

10 print("You get hard warning")

11 if retake >= 6:

12 assert("God forbid!")

13 retake -= 1

14 # end program

1–2

3 4 5

6 7

8 9

10 11

13 12

assertion

14

end

9/18



Using the control flow graph (CFG)

1 skip = 2

2 retake = 3

3 retake += skip

4 while retake >= 0:

5 if retake == 3:

6 print("You get a reminder")

7 if retake == 4:

8 print("You get soft warning")

9 if retake == 5:

10 print("You get hard warning")

11 if retake >= 6:

12 assert("God forbid!")

13 retake -= 1

14 # end program

1–2

3 4 5

6 7

8 9

10 11

13 12

assertion

14

end

9/18



Extending the CFG with a counter

1 skip = 2

2 retake = 3

3 retake += skip

4 while retake >= 0:

5 if retake == 3:

6 print("You get a reminder")

7 if retake == 4:

8 print("You get soft warning")

9 if retake == 5:

10 print("You get hard warning")

11 if retake >= 6:

12 assert("God forbid!")

13 retake -= 1

14 # end program

1–23

3 4 5

6 7

8 9

10 11

13 12

assertion

14

end

+2 ≥ 0

= 3

= 4

= 5

≥ 6

−1

Counter : = retake

10/18



Parametric one-counter automata

1 def CanSkip(skip):

2 retake = 3

3 retake += skip

4 while retake >= 0:

5 if retake == 3:

6 print("You get a reminder")

7 if retake == 4:

8 print("You get soft warning")

9 if retake == 5:

10 print("You get hard warning")

11 if retake >= 6:

12 assert("God forbid!")

13 retake -= 1

14 # end program

1–23

3 4 5

6 7

8 9

10 11

13 12

assertion

14

end

+skip ≥ 0

= 3

= 4

= 5

≥ 6

−1

Counter:= retake

11/18



Parametric one-counter automata

1 def CanSkip(skip):

2 retake = 3

3 retake += skip

4 while retake >= 0:

5 if retake == 3:

6 print("You get a reminder")

7 if retake == 4:

8 print("You get soft warning")

9 if retake == 5:

10 print("You get hard warning")

11 if retake >= 6:

12 assert("God forbid!")

13 retake -= 1

14 # end program

1–23

3 4 5

6 7

8 9

10 11

13 12

assertion

14

end

+skip ≥ 0

= 3

= 4

= 5

≥ 6

−1

Counter:= retake

11/18



(Parametric) One-Counter Automata

Natural-valued parameters

X = {x1, . . . , xn}

end
+8 −4 = 0

−2

+0

Counter Value has to be non-negative all the time!

12/18



(Parametric) One-Counter Automata

Natural-valued parameters

X = {x1, . . . , xn}

end
+8 −4 = 0

−2

+0

Counter Value has to be non-negative all the time!

12/18



(Parametric) One-Counter Automata

Natural-valued parameters

X = {x1, . . . , xn} end
+x1 −4 = x2

−2

+0

Counter Value has to be non-negative all the time!

12/18



Decidability Questions

Definition (Parameter-value Reachability)

Is there some valuation V : X → N such that there is some run of A that reaches/avoids a good/bad state?

Definition (Parameter-value Synthesis)

Is there some valuation V : X → N such that all runs of A reach/avoid a good/bad state? (reach, LTL etc)?

Non-parametric Versions of the above also

13/18



Decidability Questions

Definition (Parameter-value Reachability)

Is there some valuation V : X → N such that there is some run of A that reaches/avoids a good/bad state?

Definition (Parameter-value Synthesis)

Is there some valuation V : X → N such that all runs of A reach/avoid a good/bad state? (reach, LTL etc)?

Non-parametric Versions of the above also

13/18



Decidability Questions

Definition (Parameter-value Reachability)

Is there some valuation V : X → N such that there is some run of A that reaches/avoids a good/bad state?

Definition (Parameter-value Synthesis)

Is there some valuation V : X → N such that all runs of A reach/avoid a good/bad state? (reach, LTL etc)?

Non-parametric Versions of the above also

13/18



3. Logic

14/18



Towards Logic
“Have a problem? Encode it into a logic with decidable theory.”

end
+4 −2 = 0

−2

+0

Logical formula:
∃k(4− 2− 2k = 0)

Presburger Arithmetic : FO(Z, 0, 1,+, <)

end
+x1 −x2 = 0

−x3

+0

Logical formula:
∃x1, x2x3 (x1 ≥ 0 ∧ x1 ≥ x2 ∧ x3|x1 − x2)

Presburger Arithmetic with divisibility:
PA + |

(a | b ⇐⇒ ∃c ∈ Z : b = ac)

15/18



Towards Logic
“Have a problem? Encode it into a logic with decidable theory.”

end
+4 −2 = 0

−2

+0

Logical formula:
∃k(4− 2− 2k = 0)

Presburger Arithmetic : FO(Z, 0, 1,+, <)

end
+x1 −x2 = 0

−x3

+0

Logical formula:
∃x1, x2x3 (x1 ≥ 0 ∧ x1 ≥ x2 ∧ x3|x1 − x2)

Presburger Arithmetic with divisibility:
PA + |

(a | b ⇐⇒ ∃c ∈ Z : b = ac)

15/18



Towards Logic
“Have a problem? Encode it into a logic with decidable theory.”

end
+4 −2 = 0

−2

+0

Logical formula:
∃k(4− 2− 2k = 0)

Presburger Arithmetic : FO(Z, 0, 1,+, <)

end
+x1 −x2 = 0

−x3

+0

Logical formula:
∃x1, x2x3 (x1 ≥ 0 ∧ x1 ≥ x2 ∧ x3|x1 − x2)

Presburger Arithmetic with divisibility:
PA + |

(a | b ⇐⇒ ∃c ∈ Z : b = ac)

15/18



Towards Logic
“Have a problem? Encode it into a logic with decidable theory.”

end
+4 −2 = 0

−2

+0

Logical formula:
∃k(4− 2− 2k = 0)

Presburger Arithmetic : FO(Z, 0, 1,+, <)

end
+x1 −x2 = 0

−x3

+0

Logical formula:
∃x1, x2x3 (x1 ≥ 0 ∧ x1 ≥ x2 ∧ x3|x1 − x2)

Presburger Arithmetic with divisibility:
PA + |

(a | b ⇐⇒ ∃c ∈ Z : b = ac)

15/18



Towards Logic
“Have a problem? Encode it into a logic with decidable theory.”

end
+4 −2 = 0

−2

+0

Logical formula:
∃k(4− 2− 2k = 0)

Presburger Arithmetic : FO(Z, 0, 1,+, <)

end
+x1 −x2 = 0

−x3

+0

Logical formula:
∃x1, x2x3 (x1 ≥ 0 ∧ x1 ≥ x2 ∧ x3|x1 − x2)

Presburger Arithmetic with divisibility:
PA + |

(a | b ⇐⇒ ∃c ∈ Z : b = ac)

15/18



Towards Logic
“Have a problem? Encode it into a logic with decidable theory.”

end
+4 −2 = 0

−2

+0

Logical formula:
∃k(4− 2− 2k = 0)

Presburger Arithmetic : FO(Z, 0, 1,+, <)

end
+x1 −x2 = 0

−x3

+0

Logical formula:
∃x1, x2x3 (x1 ≥ 0 ∧ x1 ≥ x2 ∧ x3|x1 − x2)

Presburger Arithmetic with divisibility:
PA + |

(a | b ⇐⇒ ∃c ∈ Z : b = ac)

15/18



Towards Logic
“Have a problem? Encode it into a logic with decidable theory.”

end
+4 −2 = 0

−2

+0

Logical formula:
∃k(4− 2− 2k = 0)

Presburger Arithmetic : FO(Z, 0, 1,+, <)

end
+x1 −x2 = 0

−x3

+0

Logical formula:
∃x1, x2x3 (x1 ≥ 0 ∧ x1 ≥ x2 ∧ x3|x1 − x2)

Presburger Arithmetic with divisibility:
PA + |

(a | b ⇐⇒ ∃c ∈ Z : b = ac)
15/18



Complexity and Decidability

Non-parametric Reachability: NP (Presburger Arithmetic/PA)

Non-parametric Synthesis: coNP (Reduction complement to Non-parametric Reach)

Parametric Reachability: NEXP (Existential PAD)

Parametric Synthesis: N2EXP (BIL : a fragment of one-alternation PAD)

16/18



4. Conclusion

17/18



Overview

Have a system: try to model it formally

Have requirements in head: try to write it formally (specifications)

If both of them work, prove/disprove correctness

Research:

Continuous One-counter automata, VASS

Markov Decision Process

Hybrid Automata

18/18



Overview

Have a system: try to model it formally

Have requirements in head: try to write it formally (specifications)

If both of them work, prove/disprove correctness

Research:

Continuous One-counter automata, VASS

Markov Decision Process

Hybrid Automata

18/18


	Formal Verification
	One-Counter Automata
	Logic
	Conclusion

