U' University
of Antwerp

(Formal) Software Verification via Logic

(using One-Counter Automata)

Ritam Raha

October 21, 2022

Formal Verification

One-Counter Automata

Logic

Conclusion

univers
SRty

2/18

1. Formal Verification

Shneacty 3/18

Motivation

def dummy(x:int,y:int):

z =0
if x>0 & y>O0:
Z=X

return z

end program

Universi
SRty

4/18

Motivation

def dummy(x:int,y:int):

z =0
if x>0 & y>O0:
Z=X

return z

end program

— Function Coverage: “dummy"” has been called

once

— Statement Coverage: dummy(1,1)

4/18

Motivation

def dummy(x:int,y:int):

z =0
if x>0 & y>O0:
Z=X

return z

end program

Universi
SrRnenty

— Function Coverage: “dummy"” has been called
once

— Statement Coverage: dummy(1,1)
— Branch Coverage: dummy(0,1), dummy(1,1)

4/18

Motivation

def dummy(x:int,y:int):

z =0
if x>0 & y>O0:
Z=X

return z

end program

Universi
SRty

Function Coverage: “dummy” has been called
once

Statement Coverage: dummy(1,1)
Branch Coverage: dummy(0,1), dummy(1,1)

Condition Coverage... etc

4/18

Motivation

def dummy(x:int,y:int):

z =0
if x>0 & y>O0:
Z=X

return z

end program

Universi
SRty

Function Coverage: “dummy” has been called
once

Statement Coverage: dummy(1,1)
Branch Coverage: dummy(0,1), dummy(1,1)

Condition Coverage... etc

4/18

Motivation

def dummy(x:int,y:int):

z =0
if x>0 & y>O0:
Z=X

return z

end program

Universi
SRty

How much testing needed to be done?

— Function Coverage: “dummy"” has been called
once

— Statement Coverage: dummy(1,1)
— Branch Coverage: dummy(0,1), dummy(1,1)

— Condition Coverage... etc

4/18

Motivation

How much testing needed to be done?

— Function Coverage: “dummy"” has been called

def dummy(x:int,y:int): once
=0
zif x>0 & y>0: — Statement Coverage: dummy(1,1)
z=x — Branch Coverage: dummy(0,1), dummy(1,1)
return z .
— Condition Coverage... etc

end program

m What about codes that heavily depend on user inputs or outside inputs?

m How do we know, we are not missing any critical corner cases?

University, 4/18

Motivation

How much testing needed to be done?

— Function Coverage: “dummy"” has been called

def dummy(x:int,y:int): once

z =0

if x>0 & y>0: — Statement Coverage: dummy(1,1)

z=x — Branch Coverage: dummy(0,1), dummy(1,1)

return z .
o — Condition Coverage... etc
end program

m What about codes that heavily depend on user inputs or outside inputs?
m How do we know, we are not missing any critical corner cases?

m How to prove your software is doing what it is supposed to do and nothing more!

University, 4/18

Motivation

How much testing needed to be done?

— Function Coverage: “dummy"” has been called
def dummy(x:int,y:int): once
z =0
if x>0 & y>0: — Statement Coverage: dummy(1,1)
Zz=X —_

Branch Coverage: dummy(0,1), dummy(1,1)

return z

Condition Coverage... etc

end program

m What about codes that heavily depend on user inputs or outside inputs?
m How do we know, we are not missing any critical corner cases?

m How to prove your software is doing what it is supposed to do and nothing more!

“Program testing can be a very effective way to show the presence of bugs, but it is
hopelessly inadequate for showing their absence.” - E. Dijkstra

[s, 4/18

What can go wrong?

Shneacly 5/18

https://en.wikipedia.org/wiki/List_of_software_bugs

What can go wrong?

m A bug in the code controlling the Therac-25 radiation therapy machine killed five
patients.: problem in code (race condition)

Sy 5/18

https://en.wikipedia.org/wiki/List_of_software_bugs

What can go wrong?

m A bug in the code controlling the Therac-25 radiation therapy machine killed five
patients.: problem in code (race condition)

m The software error of a MIM-104 Patriot resulting in failure to intercept an incoming
Iragi Al Hussein missile, killing 28 Americans :
system clock drifted by one third of a second

Sy 5/18

https://en.wikipedia.org/wiki/List_of_software_bugs

What can go wrong?

m A bug in the code controlling the Therac-25 radiation therapy machine killed five
patients.: problem in code (race condition)

m The software error of a MIM-104 Patriot resulting in failure to intercept an incoming
Iragi Al Hussein missile, killing 28 Americans :
system clock drifted by one third of a second

m AT&T telephone network outage resulting in 9 hrs of outage of US telephone
network: wrong interpretation of break statement in C.

fyreA 5/18

https://en.wikipedia.org/wiki/List_of_software_bugs

What can go wrong?

m A bug in the code controlling the Therac-25 radiation therapy machine killed five
patients.: problem in code (race condition)

m The software error of a MIM-104 Patriot resulting in failure to intercept an incoming
Iragi Al Hussein missile, killing 28 Americans :
system clock drifted by one third of a second

m AT&T telephone network outage resulting in 9 hrs of outage of US telephone
network: wrong interpretation of break statement in C.

m A lot more at https://en.wikipedia.org/wiki/List_of_software_bugs

fiyrA 5/18

https://en.wikipedia.org/wiki/List_of_software_bugs

Formal Verification

Quantamacazine Physics Mathematics Biology ~ Computer Science Topics Archive
Hacker-Proof Code Confirmed
L Computer scientists can prove certain programs to be error-free with the

same certainty that mathematicians prove theorems. The advances are

being used to secure everything from unmanned drones to the internet.

Universi
SRty

6/18

Formal Verification

Quantamacazine Physics Mathematics Biology ~Computer Science Topics ~ Archive

Hack r-Proof Code Confirmed

L Computer scientists can prove certain programs to be error-free with the
same certainty that mathematicians prove theorems. The advances are

being used to secure everything from unmanned drones to the internet.

¢ ¥ T

Formal verification is the process of proving the correctness of intended algorithms underlying a system with
respect to a certain formal specification or property, using formal methods of mathematics.

fiyrA 6/18

Formal Verification

Formal Models
— Finite State Machines
— Vector Addition Systems
— Timed Automata/ Hybrid Automata

— Markov Decision Processes

e 7/18

Formal Verification

Formal Models
— Finite State Machines
— Vector Addition Systems
— Timed Automata/ Hybrid Automata

— Markov Decision Processes

Requirements/Formal Specifications

— Reachability
— Safety
— Temporal Logic (LTL, CTL etc.)

Universi
Shnly

7/18

Formal Verification

Formal Models
— Finite State Machines
— Vector Addition Systems
— Timed Automata/ Hybrid Automata

— Markov Decision Processes

Requirements/Formal Specifications

— Reachability
— Safety
— Temporal Logic (LTL, CTL etc.)

Advantages of Formal Verification
m Formally proving correctness and ensure safety

m Significantly reduces the verification time

Universi
Shnly

7/18

2. One-Counter Automata

Shneacty 8/18

Using the control flow graph (CFG)

1 skip = 2

2 retake = 3

3 retake += skip

4 while retake >= O0:

5 if retake == 3:

6 print ("You get a reminder")

7 if retake == 4:

8 print ("You get soft warning")
9 if retake == 5:

=
o

print ("You get hard warning")
if retake >= 6:

assert ("God forbid!")
13 retake -= 1
14 # end program

=
[

Universi
SrRnenty

9/18

Using the control flow graph (CFG)

1 skip = 2

2 retake = 3

3 retake += skip

4 while retake >= O0:

5 if retake == 3:

6 print ("You get a reminder")

7 if retake == 4:

8 print ("You get soft warning")
9 if retake == 5:

10 print ("You get hard warning")
11 if retake >= 6:

12 assert ("God forbid!")

13 retake -= 1

14 # end program end assertion

fyroA 0/18

Extending the CFG with a counter

1 skip = 2

2 retake = 3

3 retake += skip

4 while retake >= O0:

5 if retake == 3: 3
6 print ("You get a reminder")

7 if retake == 4:

8 print ("You get soft warning")

9 if retake == b:

=
o

print ("You get hard warning")
if retake >= 6:

assert ("God forbid!")
13 retake -= 1
14 # end program

=
N

Counter : = retake

Universi
SRty

assertion

10/18

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Parametric one-counter automata

def

=

CanSkip (skip):
retake = 3
retake += skip
while retake >= O0:
if retake == 3:
print ("You get a reminder")
if retake == 4:
print ("You get soft warning")
if retake == b5:
print ("You get hard warning")
if retake >= 6:
assert ("God forbid!")
retake -= 1
end program

Universi
of Antwerp

11/18

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Parametric one-counter automata

def CanSkip (skip):
retake = 3
retake += skip
while retake >= O0:
if retake == 3: 3
print ("You get a reminder")
if retake == 4:
print ("You get soft warning")
if retake == 5:
print ("You get hard warning")
if retake >= 6:
assert ("God forbid!")
retake -= 1
end program

Counter:= retake

Universi
SRty

assertion

11/18

(Parametric) One-Counter Automata

—>© +8 Q —4

12/18

(Parametric) One-Counter Automata
-2

+8 —4 =0
OO0

Counter Value has to be non-negative all the time!

oA 12/18

(Parametric) One-Counter Automata

Natural-valued parameters

-2
+x1 —4 /O\:Xz
) OO0 e

Counter Value has to be non-negative all the time!

o Rmnel 12/18

Decidability Questions

Definition (Parameter-value Reachability)

Is there some valuation V' : X — N such that there is some run of A that reaches/avoids a good/bad state?

e 13/18

Decidability Questions

Definition (Parameter-value Reachability) J

Is there some valuation V' : X — N such that there is some run of A that reaches/avoids a good/bad state?

Definition (Parameter-value Synthesis) J

Is there some valuation V : X — N such that all runs of A reach/avoid a good/bad state? (reach, LTL etc)?

e 13/18

Decidability Questions

Definition (Parameter-value Reachability)

Is there some valuation V : X — N such that there is some run of A that reaches/avoids a good/bad state?

Definition (Parameter-value Synthesis)

Is there some valuation V : X — N such that all runs of A reach/avoid a good/bad state? (reach, LTL etc)?

Non-parametric Versions of the above also

Shneadly 13/18

3. Logic

Shneacty 14/18

Towards Logic

“Have a problem? Encode it into a logic with decidable theory.”

15/18

Towards Logic

“Have a problem? Encode it into a logic with decidable theory.”

15/18

Towards Logic

“Have a problem? Encode it into a logic with decidable theory.”

Logical formula:
Jk(4 -2 -2k =0)

Sy 15/18

Towards Logic

“Have a problem? Encode it into a logic with decidable theory.”

Logical formula:
Jk(4 -2 -2k =0)

Presburger Arithmetic : FO(Z,0,1,+, <)

15/18

Towards Logic

“Have a problem? Encode it into a logic with decidable theory.”

Logical formula:
Jk(4 -2 -2k =0)

Presburger Arithmetic : FO(Z,0,1,+, <)

Sy 15/18

Towards Logic

“Have a problem? Encode it into a logic with decidable theory.”

Logical formula:
Jk(4 -2 -2k =0)

Presburger Arithmetic : FO(Z,0,1,+, <)

Logical formula:
Axq, xox3 (x1 > 0A X1 > x2 A X3]x1 — x2)

15/18

Towards Logic

“Have a problem? Encode it into a logic with decidable theory.”

Logical formula:
Jk(4 -2 -2k =0)

Presburger Arithmetic : FO(Z,0,1,+, <)

Logical formula:
Axq, xox3 (x1 > 0A X1 > x2 A X3]x1 — x2)

Presburger Arithmetic with divisibility:
PA + |
(a|b < Ice€Z:b=ac)

15/18

Complexity and Decidability

m Non-parametric Reachability: NP (Presburger Arithmetic/PA)

m Non-parametric Synthesis: coNP (Reduction complement to Non-parametric Reach)
[

[

Parametric Reachability: NEXP (Existential PAD)
Parametric Synthesis: N2EXP (BIL : a fragment of one-alternation PAD)

fyreA 16/18

4. Conclusion

Shneacty 17/18

Overview

m Have a system: try to model it formally
m Have requirements in head: try to write it formally (specifications)

m If both of them work, prove/disprove correctness

18/18

Overview

m Have a system: try to model it formally
m Have requirements in head: try to write it formally (specifications)

m If both of them work, prove/disprove correctness

Research:

m Continuous One-counter automata, VASS
m Markov Decision Process
m Hybrid Automata

18/18

	Formal Verification
	One-Counter Automata
	Logic
	Conclusion

