
About Time: Model-free Reinforcement Learning with Timed
Reward Machines

Anirban Majumdar1, Ritam Raha2, Rajarshi Roy3,
David Parker3, and Marta Kwiatkowska3

1Tata Institute of Fundamental Research, India
2Max Planck Institute for Software Systems, Germany

3Department of Computer Science, University of Oxford, UK

Abstract

Reward specification plays a central role in reinforcement learning (RL), guiding the agent’s
behavior. To express non-Markovian rewards, formalisms such as reward machines have been
introduced to capture dependencies on histories. However, traditional reward machines lack
the ability to model precise timing constraints, limiting their use in time-sensitive applications.
In this paper, we propose timed reward machines (TRMs), which are an extension of reward
machines that incorporate timing constraints into the reward structure. TRMs enable more
expressive specifications with tunable reward logic, for example, imposing costs for delays and
granting rewards for timely actions. We study model-free RL frameworks (i.e., tabular Q-
learning) for learning optimal policies with TRMs under digital and real-time semantics. Our
algorithms integrate the TRM into learning via abstractions of timed automata, and employ
counterfactual-imagining heuristics that exploit the structure of the TRM to improve the search.
Experimentally, we demonstrate that our algorithm learns policies that achieve high rewards
while satisfying the timing constraints specified by the TRM on popular RL benchmarks. More-
over, we conduct comparative studies of performance under different TRM semantics, along
with ablations that highlight the benefits of counterfactual-imagining.

Keywords: Timed Automata, Reinforcement Learning, Reward Machines

1 Introduction
Reinforcement Learning (RL) [33, 35] has become a foundational paradigm for sequential decision-
making, enabling agents to learn optimal behavior through interactions with an environment. A
crucial aspect of any RL problem is the reward specification, which defines the agent’s learning
objective. Traditionally, rewards are assumed to depend only on the current state and action,
conforming to the Markov property. However, many real-world tasks require objectives that depend
on the history of states, such as completing a sequence of goals or avoiding repeated errors. To
address this, non-Markovian reward formalisms have been developed, with reward machines (RMs)
emerging as a prominent approach.

Reward machines [26, 27] use finite-state automata to specify structured, history-dependent
reward functions. They provide a compact and expressive way to encode high-level objectives and
have been successfully integrated into RL frameworks, improving sample efficiency and interpretabil-
ity. However, a critical limitation of existing reward machines is their inability to express timing

1

ar
X

iv
:2

51
2.

17
63

7v
1

 [
cs

.A
I]

 1
9

D
ec

 2
02

5

https://arxiv.org/abs/2512.17637v1

constraints—a vital requirement in domains such as robotics and autonomous driving [30], where
requirements often involve time-sensitive elements. For instance, an AV might need to "respond to
a pedestrian crossing signal within 3 seconds" or "avoid an unsafe road for at least 10 seconds".

In this paper, we propose Timed Reward Machines (TRMs), an extension of reward machines
that integrates timing constraints into the reward specification. TRMs allow reward functions to
depend not only on the agent’s history of actions and states, but also on the time intervals between
events. Moreover, TRMs can assign costs and rewards to states and transitions, incentivizing the
agent to perform a task while respecting timing constraints and optimizing the overall reward
simultaneously.

To illustrate the setting, we define a simple TRM objective (Figure 1b) on the standard Taxi
domain (Figure 1a). The TRM encourages an agent (a taxi) to drive slowly, for example, due
to heavy traffic, by providing a higher reward when the agent delays at each step (enforced by a
self-loop with a timing constraint of x > 1). Additionally, it imposes a deadline for picking up the
passenger (enforced by a transition with timing constraint y ≤ 14). Finally, after pickup, the agent
must reach the destination (while driving slowly). Such time-sensitive objectives, involving delays
and deadlines, can be naturally captured by TRMs.

We interpret TRMs over Markov decision processes (MDPs) to model stochastic environments
(Section 3). To express timing constraints, we augment the MDP action set with explicit delay
actions. We study two standard timing interpretations, digital-time (Section 4) and real-time
(Section 5), which are similar to the integer-clock and real (dense) time interpretations in timed
automata [23]. For each setting, we devise tabular Q-learning algorithms on the product MDP
obtained by composing the environment with the TRM and its clock valuations.

In the digital case, the product construction is straightforward: integer clock valuations are
directly included in the MDP state space. In the dense-time case, we consider two approaches:
(i) time discretization of continuous delays, and (ii) a corner-point abstraction based on region
abstraction of timed automata, which encourages agents to pick delays as close as possible to
integer values.

We further incorporate heuristics from the reward machine literature [24, Sec. 3.3], counterfactual-
imagining, where we propose alternative wait times to the agent at the decision points.

With these abstractions and heuristics, our algorithms can optimise rewards based on satisfac-
tion of timing constraints. We demonstrate this in Figure 1c for our running example under both
digital and real-time interpretations. Notably, standard reward machines (without delay actions)
cannot enforce timing constraints and therefore miss higher rewards that depend on precise timing,
whereas TRMs can enable learning these.

Empirically, across standard RL benchmarks, TRMs improve performance on time-sensitive
tasks and reveal clear differences between the product constructions for digital and real-time. In
scenarios requiring substantial delays, the corner-point abstraction often yields better reward re-
turns. Moreover, we also observe consistent gains from our counterfactual-imagining heuristics.

1.1 Related Work

We begin by surveying the most relevant work: RL with timed specifications, RL with non-
Markovian specifications, and then the use of timed automata in control and planning.

RL with Timed Specifications. To our knowledge, only a handful of works consider time-
sensitive logical reward specifications for RL. Xu and Topcu [39] optimise Metric Temporal Logic
(MTL) objectives by translating them into (simple) timed automata, considering only the digital-
time setting. Dole et al. [16, 17] study subclasses of Duration Calculus that compile to variants of

2

(a) Taxi Domain

u0, −30 u1, −30 u2

{}, x > 1, {x}, −10

{}, x ≤ 1, {x}, −50

pick_pass, 500, y ≤ 14

{}, x > 1, {x}, −10

{}, x ≤ 1, {x}, −50

at_dest, 800

(b) TRM example

Corner Abstraction+CI
Digital Clock+CI
Reward Machine

(c) Reward comparison for presented RL algorithms

Figure 1: An illustration of TRM on Gym Taxi domain: (a) Taxi Domain example, with a passenger
in location red and destination in location blue, (b)A TRM that instructs the taxi to pick up a
passenger and drop her at a destination, while moving slow, and (c) Rewards obtained using digital
and real-time TRM, and reward machine.

3

timed automata. Both lines of work rely on timed automata as monitors to maximize satisfaction
of timed specifications.

In contrast to these declarative specifications, our TRM formulation gives designers fine-grained
control over reward logic, for example, integrating state-based delay costs and transition-based
rewards, while remaining compatible with standard Markovian rewards on MDPs.

RL with Non-Markovian Rewards. To specify non-Markovian reward specifications, the most
widely used formalisms are temporal logics and finite-state machines (FSMs). Among temporal
logics, there has been particular focus on Linear Temporal Logic (LTL) [12, 22, 29, 11, 34, 13].
Most of these approaches typically translate formulas into FSMs that guide learning.

FSMs are central to non-Markovian RL due to their compositional structure. Reward machines
(RMs) [26, 27] provide a general means of defining rewards in the FSM structure. Reward machines
have been extended widely with extensions for stochastic transitions [14], ω-regular properties [21],
interpreted in partial observability [28], multi-agent settings [32] and continuous-time MDP [18, 19].

Our work builds on this line and, to our knowledge, we are the first to introduce a extension of
reward machines involving timing constraints.

Timed Automata in Control and Planning. Timed automata [2] are a well-established for-
malism for modeling and verifying systems with time-dependent behavior [10, 31]. Quantitative
variants of timed automata, such as priced timed automata [5] and weighted timed automata [3],
which are extensions with costs or rewards to states and transitions, have been used in strategy
synthesis [4, 15] and planning [7, 8, 36].

In contrast to these approaches, which typically assume access to the underlying (MDP or
game) environment, our setting is model-free: strategies must be synthesized solely via sampling
the environment, without knowledge of the underlying transition graph.

2 Preliminaries and Background

2.1 Markov Decision Process

A Markov Decision Process (MDP) [35] is a tuple M = (S, A, T, R, γ), where S is a finite set of
states, A is a finite set of actions, T : S ×A× S → [0, 1] is the transition function that defines the
probability of transitioning from state s to state s′ given action a, R : S×A×S → R is the reward
function that defines the immediate reward received after taking action a in state s, and γ ∈ [0, 1)
is the discount factor.

Often, a labeling function is augmented in the definition of an MDP to capture key features of the
system. Formally, a labeled MDP is a tupleM = (S, A, T, R, γ, AP, L), where L : S×A×S → 2AP

is a labeling function that maps each state-action-next state triplet to a set of propositions AP that
hold true in that context.

A policy for an MDP is a mapping π : (S × A)∗S → ∆(A) that defines the distribution over
actions for a given history of states and actions. For Markovian rewards, it is sufficient to consider
deterministic and positional policies π : S → A.

The expected cumulative reward for a policy π is defined as the sum of the immediate rewards
received over time, discounted by the factor γ. For a policy π, it is defined as:

V π(s) = Eπ

[∞∑
t=0

γtR(st, at) | s0 = s

]
where st is the state at time t, at is the action taken at time t.

4

2.2 Reinforcement Learning with Q-learning

Reinforcement learning (RL) learns policies that maximize discounted reward in MDPs. In model-
free RL, the agent samples the environment without explicit transition or reward models. Q-
learning, a standard model-free method, learns the optimal action-value function Q : S × A → R,
the expected return of taking a in s and then following the optimal policy. The Q-learning update
rule is given by:

Q(s, a)← Q(s, a) + α

(
R(s, a) + γ max

a′
Q(s′, a′)−Q(s, a)

)
where α is the learning rate, R(s, a) is the immediate reward received after taking action a in state
s, and s′ is the next state reached after taking action a in state s.

3 Problem formulation
We first introduce the Timed Reward Machines, the non-Markovian reward structure specification
that we use to specify the reward structure in our RL problem.

3.1 Timed Reward Machine (TRM)

We extend classical timed automata with reward functions for the RL setting. For the reward
machine formalism, we follow Toro Icarte et al. [26]. In our formalism, reward machines are
augmented with a set of clocks X which can assume values in time domain T. We consider two
different time settings: (1) a digital-time setting, where T = N; and (2) a real-time setting, where
T = R≥0.

A guard is a conjunction of constraints of the form ϕ := x ▷◁ c, where x ∈ X is a clock,
▷◁ ∈ {<,≤, =,≥, >} is a comparison operator, and c ∈ N is a non-negative constant. We denote
the set of all guards over X by Φ(X). Given a set of clocks X, high-level features or propositions AP,
a timed reward machine (TRM) is a finite state machine defined as a tuple A = (U, u0, F, ∆u, ∆r),
where:

• U is a finite set of states,

• u0 ∈ U is the initial state,

• F is a set of terminal states,

• ∆u ⊆ U × 2AP ×Φ(X)× 2X × (U ∪F) is the transition relation defining the next state given
the current state, active propositions in the current state, a guard over clocks, and the clocks
to reset. We denote a transition using θ.

• ∆r = ∆u
r ∪∆θ

r, where ∆u
r : U → [S → R] is the state-based reward function and ∆θ

r : ∆u →
[S ×A× S → R] is the transition-based reward function.

It is similar in spirit to priced timed automata [9], but it is customised for reinforcement learning,
allowing for general (Markovian) reward functions in both states and transitions. In our formalism,
one can think of negative rewards as costs.

A timed word w = (d0, l0)(d1, l1) . . . (dn, ln) ∈ (T × 2AP)∗ is a sequence in which di ∈ T is a
time delay at position i and li ∈ 2AP is the set of propositions observed after that delay at position
i. A run Aw of a timed reward machine A on w is a sequence (u0, v0) d0,θ0,r0−−−−−→ (u1, v1) d1,θ1,r1−−−−−→

5

. . .
dn,θn,rn−−−−−→ (un+1, vn+1), where, for each i, ui ∈ U ∪ F is the state of the TRM, vi ∈ T|X| is the

clock valuation, ri is the reward function, and θi is the transition at that position. The above run
satisfies the following conditions:

• u0 is the initial state, v0(x) = 0 for all x ∈ X.

• let θi = (ui, li, ϕi, ρi, ui+1) ∈ ∆u, then the clock valuations satisfy the following condition:
vi + di satisfies the guard ϕi, and vi+1 = [ρi](vi + di), where [ρi] is the reset function that
resets the clocks in ρi to 0 and keeps the others unchanged.

• ri[0] = ∆θ
r(θi) and ri[1] = ∆u

r (ui) are the transition-based and state-based reward functions
at position i, respectively.

A TRM A is deterministic if for every state u ∈ U , every set of propositions l ∈ 2AP, and every
pair of guards ϕ1, ϕ2 ∈ Φ(X) such that (u, l, ϕ1, ρ, u′) ∈ ∆u and (u, l, ϕ2, ρ′, u′′) ∈ ∆u, it holds that
ϕ1∩ϕ2 = ∅. As is a common assumption in the literature on reward machines [26], we only consider
deterministic TRMs.

3.2 Interpretation of TRM on MDP

We model the environment as an MDPM = (S, A′, T, γ, L, AP), which extends the standard labeled
MDP definition by including timing delays in action space: A′ = T×A.

In our framework, the agent has the option to either act immediately or wait for a chosen
amount of time before taking the next action. This waiting period is referred to as a delay and
is selected by the agent. As a result, the agent’s trajectory takes the form of a sequence ζ =
s0 · (d0, a0) · s1 · (d1, a1) · · · (dn, an) · sn+1 ∈ (S × (T × A))∗ × S, where si ∈ S is the MDP state,
di ∈ T is the delay chosen, and ai ∈ A is the action taken. Since RL algorithms operate on sampled
finite trajectories, this paper considers only finite trajectories obtained by bounding the maximum
horizon.

A trajectory ζ induces a timed word wζ = (d0 + 1, L(s0, a0, s1)) . . . (dn + 1, L(sn, an, sn+1)),
which serves as input to the timed reward machine (TRM) A. The offset of +1 in the delays
accounts for the assumption that actions are executed after the specified delay. This definition
aligns with the reward machines based RL settings [24]; in particular, setting all delays di = 0
yields the standard untimed word over propositions.

On this timed word wζ , the TRM A produces a run Aζ : (u0, v0) d0+1,θ0,r0−−−−−−→ (u1, v1) d1+1,θ1,r1−−−−−−→
. . .

dn+1,θn,rn−−−−−−−→ (un+1, vn+1). We now define the discounted cumulative reward for a trajectory ζ.
This definition follows the standard treatment of discounting in decision processes with sojourn
times, as presented in [33, Equation 11.3.1].

Following that framework, each decision point occurring at time ti contributes a discounted
reward of γti · Ri to the total return, where Ri denotes the total reward accumulated during the
transition from state si to si+1 after taking action ai. The reward Ri consists of two parts: the
lumpsum reward rθ

i (si, ai, si+1) obtained from the transition θ in A and the state-based reward
ru

i (si) obtained from the state u in A, accrued over the interval [ti, ti+1]. Formally, the total
discounted cumulative reward is defined as:

Gζ =
n∑

i=0
γti · [rθ

i (si, ai, si+1) + ru
i (si)], where (1)

• ti = ∑i−1
j=0(dj + 1) for i > 1, t0 = 0.

6

s0 s3

s1 s2

−2 −1

−1 −4

△

p

q

u0, c u1, c u2, c
{p}, x > 2 , ∅ , 5

θ1

{q}, x > 5 , ∅ , 10
θ3

θ0:{}, ⊤ , ∅ , 0 θ2:{}, ⊤ , ∅ , 0

Figure 2: Environment (above) along with TRM objective (below). The cost function c is depicted
in the top right corner of each state.

• rθ
i = ∆θ

r(θi) is the transition-based reward at point i.

• ru
i =


∑di−1

t=0 γt∆u
r (ui) = 1−γd

1−γ ∆u
r (ui) for T = N,∫ di

0 γt∆u
r (ui) dt = 1−γd

− ln(γ)∆u
r (ui) for T = R≥0

is the state-based reward at point i.

We treat the calculation of the state-based reward ru
i differently for the digital and real-time

settings, following standard interpretations [33]. In the digital time setting, the state-based reward
is accumulated at each time step during the delay period, while in the real-time setting, it is
integrated over the delay interval.
Illustrative Example. To explain the above definitions, we consider the example in Figure 2 that
depicts a small environment with two features, p and q, which denote moving into states s1 and s3,
respectively. Starting at s0, the TRM objective A requires the agent first to observe p and then q,
while satisfying simple clock constraints.

We illustrate two trajectories, ζ1 and ζ2, for this example in Figure 3. The figure also summarises,
for each trajectory, the induced timed words, the TRM runs, and the resulting discounted returns.
Both trajectories use the same environment actions but differ in their delay choices, which leads to
different behaviour under the TRM. For instance, ζ1 waits in a “good” state s1, whereas ζ2 waits
in a “bad” state s2, incurring a higher cost. Consequently, in the digital-time setting with γ = 0.9,
ζ1 attains a higher discounted return (Gζ1 ≈ 6.4) than ζ2 (Gζ2 ≈ 5.1). The exact ordering holds
in real-time with the same delays (≈ 6.6 vs. ≈ 5.4), with the values differing due to accumulating
rewards over continuous time.

Properties of TRM. We now make some observations about the trajectories and the rewards
obtained from TRMs. Similar to classical timed automata, in timed reward machines, a trajectory
can, in principle, induce arbitrarily large clock values and delays. However, to reason about the
expected cumulative reward, one can bound the clock values and delays. As is typically done in
classical timed automata, we rely on the maximum constant M appearing in the guards of the
TRM A.

We define valuations and delays bounded by the constant M as follows: v[x] = v[x] if v[x] ≤
M else v[x] = ∞ for all x ∈ X, where ∞ denotes the clock value exceeds M . Note that ∞ will

7

Trajectory ζ1

Trajectory: ζ1 = s0 ·(2, −→)·s1 ·(1, −→) s2 ·(0,

−→

)·s3

Timed word: wζ1 = (2+1, {p})(1+1, ∅)(0+1, {q})

TRM run: Aζ1 = (u0, [0]) 3,θ1,(5,−2)−−−−−−−→ (u1, [3]) 2,θ2,(0,−1)−−−−−−−→ (u1, [5]) 1,θ3,(10,−4)−−−−−−−−→ (u2, [6])

Digital-time: Gζ1 =
[
5 + (−2)(1 + γ1)

]
+ γ3[0 + (−1)] + γ5[10 + 0] ≈ 6.4

Real-time: Gζ1 =
[
5 + (−2)

∫ 2

0
γtdt

]
+ γ3[0 + (−1)

∫ 1

0
γtdt

]
+ γ5[10 + 0] ≈ 6.6

Trajectory ζ2

Trajectory: ζ2 = s0 ·(2, −→)·s1 ·(0, −→) s2 ·(1,

−→

)·s3

Timed word: wζ2 = (2+1, {p})(0+1, ∅)(1+1, {q})

TRM run: Aζ2 = (u0, [0]) 3,θ1,(5,−2)−−−−−−−→ (u1, [3]) 1,θ2,(0,−1)−−−−−−−→ (u1, [4]) 2,θ3,(10,−4)−−−−−−−−→ (u2, [6])

Digital-time: Gζ2 =
[
5 + (−2)(1 + γ1)

]
+ γ3[0 + 0] + γ4[10 + (−4)] ≈ 5.1

Real-time: Gζ2 =
[
5 + (−2)

∫ 2

0
γtdt

]
+ γ3[0 + 0] + γ4[10 + (−4)

∫ 1

0
γtdt

]
≈ 5.4

Figure 3: Trajectories ζ1 and ζ2 with induced words, TRM runs, and discounted rewards for digital
and real-time settings (γ = 0.9).

follow the usual comparison semantics, e.g., ∞ > 2 is true, while ∞ ≤ 3 is false. We also define
bounded delays as d = d if d < M else d = M .

We extend this definition to trajectories: for a trajectory ζ = s0 · (d0, a0) · · · (dn, an) · sn+1, we
define a delay-bounded trajectory ζ = s0 · (d0, a0) · · · (dn, an) · sn+1. We can show that the delay-
bounded trajectory induces a similar run in a TRM A to the original trajectory ζ, as stated below.
The proof of this follows from the fact that any clock value v[x] beyond M has the same behavior
with any guards on x.

Lemma 1. Let ζ = s0 ·(d0, a0) · · · (dn, an)·sn+1 be a trajectory and ζ = s0 ·(d0, a0) · · · (dn, an)·sn+1

be its delay-bounded trajectory. Also, let Aζ : (u0, v0) d0+1,θ0,r0−−−−−−→ . . .
dn+1,θn,rn−−−−−−−→ (un+1, vn+1) be the

run of A on ζ. Then, the following holds: ζ has run Aζ : (u0, v0) d0,θ0,r0−−−−−→ . . .
dn,θn,rn−−−−−→ (un+1, vn+1)

where the ui’s, and θi’s remain the same as in Aζ .

Proof. The proof follows from the fact that any clock value v[x] beyond M has the same behavior
with any guards on x. Formally, let us, w.l.o.g., consider di to be the first delay in ζ such that
di ≥M . Let ϕi be the guard of transition θi and vi + di + 1 |= ϕi. Then, we have vi + di + 1 |= ϕi

since constants appearing ϕi are bounded by M .

While the above lemma shows that the delay-bounded trajectory ζ induces a similar run in the
TRM A as the original trajectory ζ, it does not guarantee that the discounted rewards Gζ and Gζ

are the same. However, under certain reasonable conditions, bounding the delays can improve the
obtained discounted reward, which we will consider in this paper. These include inducing costs for
delaying in states rather than rewarding, and providing a high terminal reward for completing all
tasks.

8

To formalise this, we assume that the state–reward function always has negative values, i.e.,
∆r(u) < 0for every u ∈ A. Also, we search for “good” trajectories ζ for which Gζ

i > 0 for all
decision points i, Gζ

i being the discounted return from i onward. Trajectories like ζ can occur, for
example, when terminal rewards along ζ are sufficiently large. For these assumptions, we now state
the following lemma, which shows that delay-bounded trajectories can achieve a better discounted
reward. Intuitively, the result follows from the fact that shorter delays lower state costs and also
reduce the discounting applied to terminal rewards.

Lemma 2. Let ζ be a trajectory and ζ be its delay-bounded trajectory. We assume that corre-
sponding TRM A and trajectory ζ satisfy the following conditions: (1) the state-based rewards are
always negative, i.e., ∆u

r (u) < 0 for all u ∈ U ; and (2) discounted reward Gζ
i > 0 is positive for

every decision time 0 ≤ i ≤ n. Then, Gζ ≥ Gζ .

Proof. We demonstrate for the digital case (as it is similar to the real-time case), using backward
induction on the length i of the trajectory. As the hypothesis, we consider that Gζ

i ≥ Gζ
i for every

i > k. For the decision point k, we show (Gζ
k = Rζ

k + γd+1Gζ
k+1) ≥ (Gζ

k = Rζ
k + γd+1Gζ

k+1). Firstly,
the reward Rζ

k > Rζ
k is higher for trajectory since state rewards accrue less cost: 1−γd

1−γ ∆u
r (uk) <

1−γd

1−γ ∆u
r (uk). Secondly, the γd+1Gζ

k ≥ γd+1Gζ
k ≥ γd+1Gζ

k.

Based on the assumptions of the above lemma, we can therefore bound the delay space to
D = T∩ [0, M]. In our setting, policies can be defined as π : (S×D×A)∗S → D×A, which maps a
trajectory to a bounded delay and an action. We call such policies delay-discounted policies, since
the reward functions defined in Equation (1) incorporate the discount factor to delays as well.

The expected cumulative reward of a policy π is defined as the expected discounted sum of
rewards over all possible trajectories that follow π, starting from a state s: V π(s) = Eζ∼π[Gζ |
ζ[0] = s].

Problem 1 (Optimal Policy Synthesis for TRMs). Given a TRM A and a MDP M , find a delay-
discounted policy π∗ that maximizes the expected cumulative reward, i.e., π∗ = arg maxπ V π(s).

In the following sections, we propose algorithms for Problem 1, both in the digital and the
real-time settings.

4 The Digital Clock Setting
Cross-product space. The most important aspect of our approach is the construction of a
cross-product between the underlying MDP M and the TRM A.

The cross-product MDPM⊗ =M⊗A is similar to what is done for classical reward machines,
except that one needs to keep track of the clock values as well. For this, we again consider the
maximum constant M appearing in the guards of clock x ∈ X of A and use the symbol∞ for clock
values that go beyond M .

The cross product (S⊗, A⊗, T ⊗, R⊗) is defined below, where:

• S⊗ = S × U × V , where S is the set of states of the MDP and U is the set of states of the
TRM, and V = ({0, . . . , M} ∪ {∞})|X| is the set of bounded clock valuations.

• A⊗ = D×A is the set of actions.

9

• T ⊗ : S⊗ × A⊗ × S⊗ → [0, 1] and R⊗ : S⊗ × A⊗ × S⊗ → R are the transition function and
the reward function, respectively, defined as follows:

T ⊗((s, u, v), (d, a), (s′, u′, v′)) = T (s, a, s′), and
R⊗((s, u, v), (d, a), (s′, u′, v′)) = ru(s) + rθ(s, a, s′), if

∃θ = (u, L(s, a, s′), ϕ, ρ, u′), s.t. v + d + 1 |= ϕ, v′ = [ρ](v + d + 1),

where for all x ∈ X, (v+d+1)[x] = v[x]+d+1 if v[x]+d+1 ≤M , otherwise∞; ru = 1−γd

1−γ ∆u
r (u),

and rθ = ∆θ
r(θ).

Theorem 1. Optimal positional deterministic delay-discounted policy exists for the cross product
MDP M⊗.

The proof holds, following standard results in MDPs [33], because the cross productM⊗ has a
finite state and action space.

Q-learning on cross-product space. We adapt Q-learning to the cross-product space by mod-
ifying the Q-value updates as follows:

Q((s, u, v), (d, a))←Q((s, u, v), (d, a))+

α

(
[R + γ(d+1) max

(d′,a′)
Q((s′, u′, v′), (d′, a′))]−Q((s, u, v), (d, a))

)
,

where R is the reward returned by the TRM A for the transition from (s, u, v) to (s′, u′, v′) on
choosing delay of d and action a.

The convergence follows from standard results [38], since M⊗ is a valid finite MDP with prob-
abilities p((s′, u′, v′)|(s, u, v), (d, a)) = p(s′|s, a).
Theorem 2. Q-learning on the cross-product M⊗ converges to an optimal policy under standard
assumptions: every state (s, u, v) ∈ S⊗ and action (d, a) ∈ A⊗ is visited infinitely often; and the
learning rate αt is decreased over time such that

∑∞
t=0 αt =∞ and

∑∞
t=0 α2

t <∞.

4.1 Counterfactual Imagining for Delays

Adding delay actions substantially enlarges the action space, so we use counterfactual imagining to
explore time alternatives efficiently.

During the Q-learning process, given a realised transition ⟨(s, ū, v̄), (d, a), r, (s′, u′, v′)⟩ in the
product MDP , we synthesize counterfactual experiences by varying the TRM states, clock valua-
tions, and delays: 〈

(s, u, v), (d̄, a), r̄, (s′, ū′, v̄′)
〉
,

where (ū, v̄) d̄,θ,r̄−−−→ (ū′, v̄′) is a single step based on TRM.
Varying valuations v̄ and delays d̄ over all possibilities requires adding several alternatives due

to potentially large clock range {0, . . . , M}. To keep the number of counterfactuals manageable,
we consider adding only reasonable alternatives for valuations and delays. First, we only consider
valuations v̄ that are close to the realized valuation v, i.e., ∥v̄ − v∥∞ ≤ rcrm for a fixed radius
rcrm (typically less than 5). Second, we consider delays d̄ that enable satisfaction of guards in the
alternative TRM state ū and clock valuation v̄. In particular, we add delays d̄ corresponding to all
transitions θ = (ū, L(s, a, s′), ϕ, ρ, ū′) such that v̄ + d̄ + 1 |= ϕ.

In contrast, for (untimed) reward machines [24], counterfactuals vary only the RM state ū,
without varying clocks or delays.

10

5 The Real-time Clock Setting
In the continuous-time case, clock values and delay actions can be real-valued, and delays can be
chosen from the continuous range [0, M], enabling more precise timing of actions. This allows for
more possible policies, often leading to better rewards.

For instance, the example in Figure 4 admits no positive-valued policy in the digital-clock
setting, while the real-time setting allows for suitable positive-valued policies. In the real-time
setting, the following trajectory: ζ1 = s0 · (0.1,−→) · s1 · (0,−→) · s2 can achieve a discounted reward
of [5 + (−1)(1− γ0.1)/− ln(γ)] + γ1.1[7] ≈ 11.13 for γ = 0.9. In contrast, similar trajectories
ζ2 = s0 · (0,−→) · s1 · (0,−→) · s2 and ζ3 = s0 · (1,−→) · s1 · (0,−→) · s2 will achieve discounted rewards of
−10+γ1[7] ≈ −3.7 and [5+(−1)(1− γ1)/(1− γ)]+γ2[−10] ≈ −4.1, respectively, in the digital-clock
setting.

u0, −1 u1 △
s0 s1

p
s2

{}, y > 1 , ∅ , 5

{}, y ≤ 1 , ∅ , -10

{p}, x < 3 , ∅ , 7

{p}, x ≥ 3 , ∅ , -10

Figure 4: TRM (on the left) and MDP (on the right) illustrating agent behavior in the real-time
setting.

Moreover, in contrast to the digital-time case, in the real-time setting, optimal policies may not
exist, as stated below

Theorem 3. Optimal delay-discounted policy may not exist in the real-time setting.

The above result can be seen from Figure 4. The best sequence (d,−→)(0,−→), 0 < d < 1, yields
return Gζ = [5 + (1−γd)

− ln(γ)(−1)] + γ(1+d)[7]. This will achieve a supremum of 11.3 as d→ 0+, but this
is unattainable since d = 0 violates the guard.

We will therefore focus on learning “near-optimal” policies. To this end, we consider various
(discrete) abstractions of continuous-time, enabling us to exploit tabular RL algorithms.

Uniform Discretization of Continuous Time. A naive approach to approximating real-time
is to use a uniform discretization. This would mean partitioning the time domain using a step
size 0 < 1

κ < 1, κ > 1 ∈ N. In this setting, the clock valuations would be the set Vκ = {v ∈
([0, M]∪{∞})|X| | v[x] = c/κ or v[x] =∞ for c = 0, . . . , M ·κ, for all x ∈ X} and the delay action
space Dκ = {c/κ ∈ [0, M] | c = 0, . . . , M · κ}.

The cross-product MDP M⊗ can then be constructed as in the digital-clock case, except that
the action space and state space are defined as above. One can therefore apply the Q-learning
algorithm developed in Section 4 and achieve similar convergence guarantees on the considered
cross-product MDP.

To achieve better approximations of the optimal value using uniform discretization, one would
require choosing a larger partition κ. However, the size of the valuation space |Vκ| and |Dκ| grows
with κ, specifically |Vκ| = (M · κ + 1)|X| and |Dκ| = M · κ + 1. This leads to a significant increase
in the state and action space of the cross-product MDP, hindering the scalability of this approach.

11

5.1 Corner-Point Abstraction based on Regions

To address the challenges arising from discretizing real-time, several approaches have been pro-
posed that construct principled abstractions of clock valuations for timed state machines [1].

In this work, we will adapt the corner-point abstraction formulation that is based on the region
abstraction [1]. While this has already been used in the context of priced timed automata [7, 8],
we adapt it to interpret TRMs over MDPs for discounted rewards.

The key idea of regions is to partition the infinite set of clock valuations into finitely many
equivalence classes that behave identically with respect to guards. Region corners are the nearby
integral boundary points; choosing delays near such corners often yields a higher reward (as in
Figure 4).

To formally introduce the corner-point abstraction, we briefly recall the region abstraction and
then define its corner points. Given a set of clocks X and a max-constant M , a region is a tuple
(h, [X0, . . . , Xp]), where h : X → {0, . . . , M}, and (Xi)p

i=0 is a partition of X such that for all i > 0,
Xi ̸= ∅ and h(x) = M implies x ∈ X0. A valuation v is in a region if the following conditions hold:

• for all x ∈ X, ⌊v(x)⌋ = h(x),

• for all x ∈ X, x ∈ X0 iff {v(x)} = 0 (i.e., v(x) = h(x)), and

• for all x, y ∈ X, {v(x)} ≤ {v(y)} iff x ∈ Xi, y ∈ Xj , i ≤ j,
where ⌊c⌋ and {c} denote the integer and fractional parts of c, respectively. For example, the
valuation v with v(x) = 1.2, v(y) = 0.5 lies in the region R = ({x : 1, y : 0}, [{}, {x}, {y}]). Two
valuations v, v are region-equivalent, denoted v ∼ v, if they belong to the same region. For a
valuation v, [v] denotes the region to which it belongs.

A corner point is a valuation v ∈ {0, . . . , M}|X| with integral values for each clock. A corner
point of a region R belongs to the (topological) closure of R. For example, the corner points of the
example region above are (1, 0), (1, 1), and (2, 1).

For a precision ε > 0, we define the ε-corners of a region R to be Cε(R) = {v ∈ R | ∀x, v(x) ∈
(c− ε, c + ε) where c is a corner of R} the valuations close to its corners.

Given a trajectory ζ = s0 · (d0, a0) · · · (dn, an) · sn+1, we define its region-equivalent trajectories
[ζ] to be the set of all trajectories ζ̂ of the form s0 · (d̂0, a0) · · · (d̂n, an) · sn+1 such that for all
i ∈ {0, n + 1}, vi ∼ v̂i, where vi and v̂i are the valuations appearing in Aζ and Aζ̂ . Given a
trajectory ζ and an ε, we define region-equivalent corner trajectories of ζ, denoted by Cε(ζ), as the
set of trajectories ζ̂ such that ζ̂ ∈ [ζ] and v̂i ∈ Cε([vi]) for all valuations vi and v̂i appearing in the
runs Aζ and Aζ̂ , respectively.

We now show that, for a trajectory ζ, moving its valuations vi’s to the corners improves the
discounted reward; the proof proceeds via an induction on i, improving the reward iteratively.
Lemma 3. For any trajectory ζ, there exists a region-equivalent corner trajectory ζ̂ ∈ Cε(ζ) such
that Gζ̂ ≥ Gζ .

Proof. The proof proceeds inductively on the length of the trajectory ζ. We modify ζ = ζ̂0 in
each inductive step to ζ̂i to ensure that the valuation v̂i at each decision point i is in Cε([vi]). In
induction step i, we assume the hypothesis that in trajectory ζ̂i−1, for all j < i, v̂j are in Cε([vj]),
Gζ̂i−1 ≥ Gζ̂j . Now, we create ζ̂i from ζ̂i−1 by modifying d̂i to make v̂i ∈ Cε([vi]), and from decision
point i + 1 onwards ζ̂i and ζ̂i−1 are identical. We now like to check that the reward Gζ̂i ≥ Gζ̂i−1 .

We consider the difference in the calculation of Gζ̂i and Gζ̂i−1 . For this, we note that the only
difference between the two trajectories is time at the decision point i; for ζi we refer using t′

i and
for ζi−1 using ti. We can now write the following:

12

Gζ̂i −Gζ̂i−1 = [γti−1(∆θ
i−1 + (1− γd′

i−1)
− ln γ

∆u
i−1)− γti−1(∆θ

i−1 + (1− γdi−1)
− ln γ

∆u
i−1)]

+ [γt′
i(∆θ

i + (1− γd′
i)

− ln γ
∆u

i)− γti(∆θ
i + (1− γdi)

− ln γ
∆u

i)]

=
∆u

i−1
− ln γ

[γti−1+di−1 − γti−1+d′
i−1] + ∆θ

i (γt′
i − γti) + ∆u

i

− ln γ
(γt′

i − γti)

=
∆u

i−1
− ln γ

(γti − γt′
i) + ∆θ

i (γt′
i − γti) + ∆u

i

− ln γ
(γt′

i − γti)

= (γt′
i − γti) · (∆θ

i + ∆u
i

− ln γ
−

∆u
i−1

− ln γ
) = (γt′

i − γti) ·K.

In the above equation, the second term is constant, therefore replaced by K. Now, K could be
either positive or negative, and depending on the sign of K, we can set t′

i in a way such that it lies
in one of the corners of the corresponding region, and that the above quantity becomes positive.

We now extend the definition of “region-equivalent corner sets" from trajectories to policies. Let
π and π̂ be deterministic positional policies such that, for each state (s, u, v) in the cross product
MDP, π(s, u, v) = (d, a) and π̂(s, u, v) = (d′, a), i.e., both prescribe the same discrete action a but
possibly different delays d and d′. We say that π̂ ∈ Cε(π) is a region-equivalent corner policy of π
if for all (s, u, v), d′ = d, if v /∈ Cε([v]), and v + d′ ∈ Cε([v + d]) otherwise.

We can extend the previous lemma for the following result:

Lemma 4. For any delay-discounted policy π, there exists a region-equivalent corner policy π′ such
that V π′(s) ≥ V π(s).

Proof. Since we have fixed a horizon, we can also perform a similar inductive construction of a
policy π′ from π as the previous result. Here, the proof proceeds via an induction on the depth i
of the induced Markov chainMπ of the policy. Following a similar calculation, for a state s at the
ith depth, the difference between V π′

i(s) and V πi(s) can be written as:∑
ζ∈Mπi−1 ,ζ̂∈Mπi

Prζ∼Mπ [Gζ̂ −Gζ] =
∑
ζ,ζ̂

Prζ∼Mπ ·K · (γt′
i − γti) = K ′ · (γt′

i − γti).

Then, based on the sign of the constant K, we can modify the policy πi such that t′
i is in one of

the corners and the above difference is positive.

We can therefore focus our attention to only region-equivalent corner policies. Although it signif-
icantly reduces the search space, an infinite number of such policies can still exist. To address this,
we introduce a ‘finite’ abstraction of the cross-product MDP, where valuations correspond to the
corners of the regions. We then show that this finite MDP provides a near-optimal approximation
of the original real-time MDP.

Cross-product using Corner-Point Abstraction. To define the cross-product MDP in this
case, we first describe how a corner configuration (R, α) of the corner-abstraction of A, where R is
a region and α is a corner point of R, evolves under elapsing time.

In this setting, the agent, in addition to a delay d ∈ D = {0, . . . , M}, chooses a region successor
σ ∈ S = {−2|X|, . . . , 0, . . . , 2|X|} that assigns which region to move to associated with a corner1.

1Some successors may be invalid and/or not distinct for certain types of (R, α).

13

Intuitively, applying a delay-successor tuple (d, σ) to a configuration (R, α) leads to a new config-
uration (R′, α′) obtained as follows: first shift both R and α by d time unit, and then choose the
σth successor region associated with that corner. Formally, (R, α)⊕ (d, σ) is the new configuration
(R′, α′) defined as: α′ = α + d, R′′[h] = R[h] + d and R′ is the σth successor region of R′′ associated
with α′.

To understand the above definitions, consider an example corner configuration (R = ({x : 1, y :
0}, [{x}, {y}]), α = (1, 0)). This region contains valuations such as v(x) = 1, v(y) = 0.1. Applying
delay, (1, 0) leads to (R1 = ({x : 2, y : 1}, [{x}, {y}]), α1 = (2, 1)), which is essentially the same
region and corner pair offset by +1. This region contains valuations such as v(x) = 2, v(y) = 1.1. On
the other hand, applying time elapse (1, 1) leads to (R2 = ({x : 2, y : 1}, [{}, {x}, {y}]), α2 = (2, 1)),
which is the region successor of R1 associated with the same corner α2. This region contains
valuations such as v′(x) = 2.1, v′(y) = 1.2.

We then define the cross-product MDPM⊗ = (S⊗, A⊗, T ⊗, R⊗) as follows: S⊗ = S×U×R×C,
where R is the set of regions of A, and C is the set of corner points associated with the regions;
A⊗ = D× S×A, where D = {0, 1, . . . , M} and S = {−2|X|, . . . , 0, . . . , 2|X|}; and T ⊗ : S⊗ ×A⊗ ×
S⊗ → [0, 1] and R⊗ : S⊗ ×A⊗ × S⊗ → R are defined as follows:

T ⊗((s, u, R, α), (d, σ, a), (s′, u′, R′, α′)) = T (s, a, s′), and
R⊗((s, u, v), (d, σ, a), (s′, u′, v′)) = ru(s) + rθ(s, a, s′), if

∃θ = (u, L(s, a, s′), ϕ, ρ, u′), s.t. v + d + 1 |= ϕ, v′ = [ρ](v + d + 1);
(R′′, α′′) = (R, α)⊕ (d + 1, σ) and R′′ |= ϕ, R′ = [ρ](R′′),

where for all x ∈ X, (v +d+1)[x] = v[x]+d+1 if v[x]+d+1 ≤M , otherwise∞; ru = 1−γd

− ln(γ)∆u
r (u),

and rθ = ∆θ
r(θ).

The above operations on regions such as successor and reset are well-defined and can be com-
puted efficiently [1].

We then show that an optimal policy in the corner-point abstraction MDP serves as a good
approximation of region-equivalent corner policies in the original MDP in the real-time setting:

Theorem 4. For every corner policy π in MDP M with a TRM A, there exists a policy π′ in the
corner-point abstraction MDP M⊗, such that, given any δ > 0, |V π(s)− V π′(s)| < δ.

Proof. Consider a corner policy π in MDP M with a TRM A. We now construct a corresponding
policy π′ in the corner-point abstractionM⊗ as follows. For every cross-product state (s, u, v) such
that v ∈ Cε([v]) and π(s, u, v) = (d, a), we define

π′((s, u, ([v], α))) = ((d′, σ), a),

where α is the closest corner in (v − ε, v + ε), and the parameters (d′, σ) satisfy:

1. v + d ∈ Cε(R′) where (R′, α′) = ([v], α)⊕ (d′, σ);

2. v + d′ is the closest corner point of [v + d], i.e., v + d and v + d′ correspond to the same corner
of their respective regions.

By construction, the offsets between the concrete and abstract valuations are bounded: |α−v| ≤
ε and |α′ − (v + d)| ≤ ε. Hence, the induced delay shift satisfies |d′ − d| ≤ 2ε. As rewards in M
are continuous with respect to delay and clock valuations inside each region (the guards and resets
unchanged), the difference in immediate reward between π and π′ at any step is bounded by a
Lipschitz-continuous function f(ε) satisfying f(ε)→ 0 as ε→ 0.

14

The discount factor does not amplify this bound since 0 < γk ≤ 1 for all k. Restricting to
trajectories of bounded horizon H, the total cumulative reward discrepancy satisfies |Gπ −Gπ′ | ≤
H ·f(ε). Consequently, |Vπ(s)−Vπ′(s)| ≤ H ·f(ε). Choosing ε sufficiently small such that H ·f(ε) < δ
yields the desired approximation guarantee: |Vπ(s)− Vπ′(s)| < δ.

Hence, standard Q-learning algorithms can be applied on the corner-point abstraction MDP
M⊗ to obtain the optimal policy, and thus this allows us to get a near-optimal policy in M.

We also design counterfactual imagining for the corner abstraction, analogous to the digital-
time setting (Section 4.1). By contrast, here we synthesize alternative corner configurations (R̄, c̄)
within a bounded radius rcrm of the realised configuration (R, c). Moreover, we add alternative
delay and successor actions whenever the resulting configuration (R̄, c̄)⊕(d̄, σ̄) satisfies the relevant
guards.

6 Evaluation
All the described algorithms were implemented in Python32 by extending [25]. We developed the
timing extensions, including region and corner abstractions, for reward machines from scratch.

To improve learning performance, we employed several heuristics for interpreting TRMs. First,
to reduce clock-valuation space V , we assigned clock-specific maximum constants Mx for x ∈ X, a
standard optimisation in timed automata. Second, to reduce delay-space D, we set the maximum
delay Md to the largest constant appearing in guards of the form x ▷◁ c with ▷◁∈ {>,≥, =}. This
is not a restriction, as delays larger than Md only incur additional costs and therefore do not need
to be considered for optimal policies.

6.1 Experimental Results.

We address two key research questions here: RQ1: performance gains from counterfactual imagining;
and RQ2: performance differences across various time interpretations.

To do so, we use standard Gym environments: (i) the Taxi domain (as in Figure 1a), with
propositions indicating colored pick-up locations and whether the passenger is in the taxi or at the
destination; and (ii) Frozen Lake (default 8× 8), augmented with three goals (a, b, c) and ten holes
(h), with action success probability 0.8 [37].

We use Q-learning with per-episode parameter decay 0.999, initial rate α0 = 0.9, initial explo-
ration ε0 = 0.9, initial Q-values Q0 = 10, γ = 0.999 and maximum global steps of 300 K. For
counterfactuals, we select the top 15 by rewards per transition. We averaged the results of each
experiment over 10 independent runs.

2available at https://github.com/ritamraha/Timed-Reward-Machines

15

https://github.com/ritamraha/Timed-Reward-Machines

(a) Taxi domain (b) Frozen Lake

Figure 5: Gym environments used in experiments.

Taxi Domain on TRM1 Frozen Lake on TRM2

(a) Discounted reward comparison

Taxi Domain on TRM1 Frozen Lake on TRM2

(b) Episode time comparison

Figure 6: RQ1: Performance gain for counterfactual imagining for digital and real-time settings for
two environments.

Taxi Domain on TRM3 Frozen Lake on TRM4

(a) Discounted reward comparison

Taxi Domain on TRM3 Frozen Lake on TRM4

(b) Episode time comparison

Figure 7: RQ2: Performance difference for various timed interpretations

16

u1, -1 u2, -1 u3, -1

u4, -1u0, -1

in_taxi, x > 10 , {x} , 200

!in_taxi, ⊤ , ∅ , -5

at_green&in_taxi, ⊤ , {x} , 400

!at_green&in_taxi, ⊤ , ∅ , -5

!in_taxi, ⊤ , ∅ , -5
at_dest,
x ≤ 15,
∅, 600

!at_dest&in_taxi, ⊤ , ∅ , -5

!at_dest&!in_taxi, ⊤ , ∅ , -5

drop_off, ⊤ , ∅ , 800
!drop_off, ⊤ , ∅ , -5

(a) TRM1 for Taxi

u1, -20 u2, -20 u3, -20

u0, -200

a, x ≤ 12 , {x, y} , 200

b | c, ⊤ , ∅ , -10

{}, y > 1 , {y} , -5
{}, y ≤ 1 , {y} , -50

h, ⊤ , ∅ , -200

b, x ≤ 15 , {x, y} , 600

{}, y > 1 , {y} , -5
{}, y ≤ 1 , {y} , -50

a | c, ⊤ , ∅ , -10

h, ⊤ , ∅ , -200

c, x ≤ 10 , ∅ , 800
h, ⊤ , ∅ , -200

a, ⊤ , ∅ , -10
b, ⊤ , ∅ , -20

{}, y > 1 , {y} , -5
{}, y ≤ 1 , {y} , -50

(b) TRM2 for FrozenLake

u1, -20 u2, -20 u3, -20

u4, -20u0, -20

in_taxi, x ≤ 14 , {x, y} , 200

!in_taxi, y > 1 , {y} , -5
!in_taxi, y ≤ 1 , {y} , -50

at_green&in_taxi, ⊤ , {x, y} , 400

!at_green&in_taxi, y > 1 , {y} , -5
!at_green&in_taxi, y ≤ 1 , {y} , -50

!in_taxi, ⊤ , ∅ , -100
at_dest,
x ≤ 15,
∅, 600

!at_dest&in_taxi, y > 1 , ∅ , -5
!at_dest&in_taxi, y ≤ 1 , ∅ , -50

!at_dest&!in_taxi, ⊤ , ∅ , -100

drop_off, ⊤ , ∅ , 800
!drop_off, ⊤ , ∅ , -5

(c) TRM3 for Taxi

u1, -20 u2, -20 u3, -20

u0, -200

a, ⊤ , {x} , 200

b | c, ⊤ , ∅ , -10

{}, x > 1 , {x} , -5
{}, x ≤ 1 , {x} , -50

h, ⊤ , ∅ , -200

b, ⊤ , {x} , 600

{}, x > 0 , {x} , -5
{}, x ≤ 0 , {x} , -50

a | c, ⊤ , ∅ , -10

h, ⊤ , ∅ , -200

c, ⊤ , ∅ , 800
h, ⊤ , ∅ , -200

a, ⊤ , ∅ , -10
b, ⊤ , ∅ , -20

{}, x > 1 , {x} , -5
{}, x ≤ 1 , {x} , -50

(d) TRM4 for FrozenLake

Figure 8: TRMs for Experimental Evaluations

17

RQ1: Performance gain for Counterfactual Reasoning

To analyze the improvement of counterfactual imagining (CI) specific to time, we only choose
alternative clock valuations and delays (and not TRM states) for both the digital and the real-time
settings. We demonstrate this comparison on the Taxi domain with TRM1 (Figure 8a), and on the
frozen lake with TRM2 (Figure 8b). TRM1 requires the Taxi agent to pick up a passenger, visit a
green location, and drop them at the destination, while satisfying several timing constraints. On
the other hand, TRM2 requires the Frozen Lake agent to satisfy three objectives, a, b, c, sequentially,
while avoiding falling into the holes, and it must also move slowly.

Figure 6 compares discounted returns and episode time (including delays) during Q-learning on
both environments. Counterfactuals yield significantly higher returns in both digital and corner-
point abstractions by enabling exploration of additional ways to satisfy timing constraints. They
also significantly reduce episode time, allowing agents to complete tasks faster.

RQ2: Comparison of Timing Abstractions

We evaluate the performance of different cross-products for different time interpretations: (i) digital
clock abstraction, (ii) uniform discretization with 1/κ ∈ {0.2, 0.5}, (iii) corner-point abstraction,
and (iv) reward machines. Note that the reward machine interpretation cannot choose delay actions,
as it is not designed for timed specifications. We demonstrate this comparison on the Taxi domain
with TRM3 (Figure 8c), and on the frozen lake with TRM4 (Figure 8d). The TRMs are similar to
the previous experiment, with different time constraints.

Figure 7 compares discounted returns and episode time (including delays) during Q-learning
on both environments. The plots in Figure 7a show that the corner-point abstraction consistently
outperforms the other interpretations in terms of discounted return. This advantage arises from
the ability to select delays that lie close to the guard conditions (i.e., y > 1), thereby enabling the
agent to satisfy timing requirements precisely. While comparing the episode time, we notice that
reward machines lead to the shortest episodes; however, this behavior is undesirable in this setting,
as excessively completing episodes too fast violates several timing constraints.

7 Conclusion
We studied model-free RL for Timed Reward Machines (TRMs), a formalism that extends reward
machines with explicit timing constraints. We interpreted TRMs over MDPs under digital and real-
time semantics and devised abstractions for efficient learning. Our experiments with non-trivial
timed specifications show that TRMs enable learning policies with delays for maximizing rewards.

This work represents a step toward improving time-sensitive reward specification in RL, with
numerous avenues ahead. One can apply TRMs to continuous-time Markov models [19], which
better capture rate-based timing; adapt deep continuous RL (e.g., TD3 [20]) to continuous-time;
and incorporate guidance from priced zones [6] to improve exploration of TRM objectives.

Acknowledgements. This project received funding from the ERC under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No.834115, FUN2MODEL).

18

References
[1] Alur, R., Courcoubetis, C., Dill, D.L., Halbwachs, N., Wong-Toi, H.: An implementation of

three algorithms for timing verification based on automata emptiness. In: RTSS. pp. 157–166.
IEEE Computer Society (1992)

[2] Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)

[3] Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata. In: HSCC.
Lecture Notes in Computer Science, vol. 2034, pp. 49–62. Springer (2001)

[4] Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.: Uppaal-tiga:
Time for playing games! In: CAV. Lecture Notes in Computer Science, vol. 4590, pp. 121–125.
Springer (2007)

[5] Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J., Vaandrager,
F.W.: Minimum-cost reachability for priced timed automata. In: HSCC. Lecture Notes in
Computer Science, vol. 2034, pp. 147–161. Springer (2001)

[6] Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Priced timed automata: Algorithms and ap-
plications. In: FMCO. Lecture Notes in Computer Science, vol. 3657, pp. 162–182. Springer
(2004)

[7] Bouyer, P., Brinksma, E., Larsen, K.G.: Staying alive as cheaply as possible. In: HSCC.
Lecture Notes in Computer Science, vol. 2993, pp. 203–218. Springer (2004)

[8] Bouyer, P., Brinksma, E., Larsen, K.G.: Optimal infinite scheduling for multi-priced timed
automata. Formal Methods Syst. Des. 32(1), 3–23 (2008)

[9] Bouyer, P., Cassez, F., Fleury, E., Larsen, K.G.: Optimal strategies in priced timed game
automata. In: FSTTCS. Lecture Notes in Computer Science, vol. 3328, pp. 148–160. Springer
(2004)

[10] Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: A model-
checking tool for real-time systems. In: CAV. Lecture Notes in Computer Science, vol. 1427,
pp. 546–550. Springer (1998)

[11] Bozkurt, A.K., Wang, Y., Zavlanos, M.M., Pajic, M.: Control synthesis from linear tem-
poral logic specifications using model-free reinforcement learning. In: 2020 IEEE Interna-
tional Conference on Robotics and Automation, ICRA 2020, Paris, France, May 31 - August
31, 2020. pp. 10349–10355. IEEE (2020). https://doi.org/10.1109/ICRA40945.2020.9196796,
https://doi.org/10.1109/ICRA40945.2020.9196796

[12] Camacho, A., Icarte, R.T., Klassen, T.Q., Valenzano, R.A., McIlraith, S.A.: LTL and
beyond: Formal languages for reward function specification in reinforcement learning.
In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intel-
ligence, IJCAI 2019, Macao, China, August 10-16, 2019. pp. 6065–6073. ijcai.org (2019).
https://doi.org/10.24963/IJCAI.2019/840, https://doi.org/10.24963/ijcai.2019/840

[13] Cohen, M.H., Belta, C.: Model-based reinforcement learning for approximate optimal control
with temporal logic specifications. In: HSCC. pp. 12:1–12:11. ACM (2021)

19

https://doi.org/10.1109/ICRA40945.2020.9196796
https://doi.org/10.24963/ijcai.2019/840

[14] Corazza, J., Gavran, I., Neider, D.: Reinforcement learning with stochastic reward machines.
In: AAAI. pp. 6429–6436. AAAI Press (2022)

[15] David, A., Jensen, P.G., Larsen, K.G., Mikucionis, M., Taankvist, J.H.: Uppaal stratego. In:
TACAS. Lecture Notes in Computer Science, vol. 9035, pp. 206–211. Springer (2015)

[16] Dole, K., Gupta, A., Komp, J., Krishna, S., Trivedi, A.: Event-triggered and time-triggered
duration calculus for model-free reinforcement learning. In: RTSS. pp. 240–252. IEEE (2021)

[17] Dole, K., Gupta, A., Komp, J., Krishna, S., Trivedi, A.: Correct-by-construction reinforcement
learning of cardiac pacemakers from duration calculus requirements. In: AAAI. pp. 14792–
14800. AAAI Press (2023)

[18] Falah, A., Guha, S., Trivedi, A.: Reinforcement learning for omega-regular specifications on
continuous-time MDP. In: ICAPS. pp. 578–586. AAAI Press (2023)

[19] Falah, A., Guha, S., Trivedi, A.: Continuous-time reward machines. In: IJCAI. pp. 5056–5064.
ijcai.org (2025)

[20] Fujimoto, S., van Hoof, H., Meger, D.: Addressing function approximation error in actor-critic
methods. In: ICML. Proceedings of Machine Learning Research, vol. 80, pp. 1582–1591. PMLR
(2018)

[21] Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.: Omega-regular
reward machines. In: ECAI. Frontiers in Artificial Intelligence and Applications, vol. 372, pp.
972–979. IOS Press (2023)

[22] Hasanbeig, M., Kantaros, Y., Abate, A., Kroening, D., Pappas, G.J., Lee, I.: Reinforcement
learning for temporal logic control synthesis with probabilistic satisfaction guarantees. In: 58th
IEEE Conference on Decision and Control, CDC 2019, Nice, France, December 11-13, 2019.
pp. 5338–5343. IEEE (2019). https://doi.org/10.1109/CDC40024.2019.9028919, https://doi.
org/10.1109/CDC40024.2019.9028919

[23] Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: ICALP. Lecture
Notes in Computer Science, vol. 623, pp. 545–558. Springer (1992)

[24] Icarte, R.T.: Reward Machines. Ph.D. thesis, University of Toronto, Canada (2022)

[25] Icarte, R.T., Klassen, T.: Reward machines. https://github.com/RodrigoToroIcarte/
reward_machines (2018), gitHub repository

[26] Icarte, R.T., Klassen, T.Q., Valenzano, R.A., McIlraith, S.A.: Using reward machines for high-
level task specification and decomposition in reinforcement learning. In: ICML. Proceedings
of Machine Learning Research, vol. 80, pp. 2112–2121. PMLR (2018)

[27] Icarte, R.T., Klassen, T.Q., Valenzano, R.A., McIlraith, S.A.: Reward machines: Exploiting
reward function structure in reinforcement learning. J. Artif. Intell. Res. 73, 173–208 (2022).
https://doi.org/10.1613/JAIR.1.12440, https://doi.org/10.1613/jair.1.12440

[28] Icarte, R.T., Waldie, E., Klassen, T.Q., Valenzano, R.A., Castro, M.P., McIlraith, S.A.: Learn-
ing reward machines for partially observable reinforcement learning. In: NeurIPS. pp. 15497–
15508 (2019)

20

https://doi.org/10.1109/CDC40024.2019.9028919
https://doi.org/10.1109/CDC40024.2019.9028919
https://github.com/RodrigoToroIcarte/reward_machines
https://github.com/RodrigoToroIcarte/reward_machines
https://doi.org/10.1613/jair.1.12440

[29] Jothimurugan, K., Bansal, S., Bastani, O., Alur, R.: Compositional reinforcement learning
from logical specifications. In: NeurIPS. pp. 10026–10039 (2021)

[30] Kane, A., Chowdhury, O., Datta, A., Koopman, P.: A case study on runtime monitoring of
an autonomous research vehicle (ARV) system. In: RV. Lecture Notes in Computer Science,
vol. 9333, pp. 102–117. Springer (2015)

[31] Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools Technol.
Transf. 1(1-2), 134–152 (1997)

[32] Neary, C., Xu, Z., Wu, B., Topcu, U.: Reward machines for cooperative multi-agent reinforce-
ment learning. In: AAMAS. pp. 934–942. ACM (2021)

[33] Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley Series in Probability and Statistics, Wiley (1994)

[34] Shao, D., Kwiatkowska, M.: Sample efficient model-free reinforcement learning from LTL
specifications with optimality guarantees. In: IJCAI. pp. 4180–4189. ijcai.org (2023)

[35] Sutton, R.S., Barto, A.G.: Reinforcement learning - an introduction, 2nd Edition. MIT Press
(2018)

[36] Tollund, R.G., Johansen, N.S., Nielsen, K.Ø., Torralba, Á., Larsen, K.G.: Optimal infinite
temporal planning: Cyclic plans for priced timed automata. In: ICAPS. pp. 588–596. AAAI
Press (2024)

[37] Towers, M., Kwiatkowski, A., Terry, J., Balis, J.U., De Cola, G., Deleu, T., Goulão, M.,
Kallinteris, A., Krimmel, M., KG, A., Perez-Vicente, R., Pierré, A., Schulhoff, S., Tai, J.J., Tan,
H., Younis, O.G.: Gymnasium: A standard interface for reinforcement learning environments.
arXiv preprint arXiv:2407.17032 (2024)

[38] Watkins, C.J.C.H., Dayan, P.: Technical note q-learning. Mach. Learn. 8, 279–292 (1992)

[39] Xu, Z., Topcu, U.: Transfer of temporal logic formulas in reinforcement learning. In: IJCAI.
pp. 4010–4018. ijcai.org (2019)

21

	Introduction
	Related Work

	Preliminaries and Background
	Markov Decision Process
	Reinforcement Learning with Q-learning

	Problem formulation
	Timed Reward Machine (TRM)
	Interpretation of TRM on MDP

	The Digital Clock Setting
	Counterfactual Imagining for Delays

	The Real-time Clock Setting
	Corner-Point Abstraction based on Regions

	Evaluation
	Experimental Results.

	Conclusion

