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Abstract
This paper presents a novel dynamic post-shielding framework that enforces the full class of ω-regular
correctness properties over pre-computed probabilistic policies. This constitutes a paradigm shift
from the predominant setting of safety-shielding – i.e., ensuring that nothing bad ever happens – to
a shielding process that additionally enforces liveness – i.e., ensures that something good eventually
happens. At the core, our method uses Strategy-Template-based Adaptive Runtime Shields (STARs),
which leverage permissive strategy templates to enable post-shielding with minimal interference.
As its main feature, STARs introduce a mechanism to dynamically control interference, allowing a
tunable enforcement parameter to balance formal obligations and task-specific behavior at runtime.
This allows to trigger more aggressive enforcement when needed while allowing for optimized policy
choices otherwise. In addition, STARs support runtime adaptation to changing specifications
or actuator failures, making them especially suited for cyber-physical applications. We evaluate
STARs on a mobile robot benchmark to demonstrate their controllable interference when enforcing
(incrementally updated) ω-regular correctness properties over learned probabilistic policies.

1 Introduction

Adhering to formal correctness while simultaneously optimizing performance is a core challenge
in the design of autonomous cyber-physical systems (CPS) [16,51]. This has led to a rich
body of work integrating logical specifications into traditional controller synthesis via multi-
objective formulations [13,14,25,47], or into policy synthesis via reinforcement learning (RL)
through automata-based reward shaping [12,21,22,28,34,40,56]. While these approaches
can produce policies that satisfy complex goals while adhering to formal specifications, they
embed the specification into the synthesis procedures – requiring re-synthesis whenever
formal objectives, environment conditions, or reward structures are changing.

To overcome these limitations, the concept of shielding was introduced: a runtime
enforcement mechanism that monitors and, if necessary, overrides the actions proposed by
a controller or agent to ensure adherence to a formal specification. Shields treat existing
policies as a black box and ensure correctness in a minimally interfering manner i.e., they
intervene if and only if the systems executions will (surely) violate the formal specification
(in the future). The concept of shielding traces back to the foundational works on runtime
monitoring of program executions in computer science [23, 35], and formal supervision of
feedback control software in engineering [45]. More recently, shielding frameworks for learned
policies, especially for autonomous CPS, have been proposed (surveyed e.g. in [24,30,40,55]).

Shielding can be applied at different stages of the control pipeline. In pre-shielding, the
shield is active during policy computation – e.g., during RL training – ensuring the policy
avoids ‘bad’ actions even in the learning stage. However, this tight integration with learning
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2 Dynamic ω-Regular Shielding of Learned Probabilistic Policies

comes at the cost of modularity and flexibility: any change to the system or specification
requires recomputing the shielded policy. In contrast, post-shielding is applied at deployment
- after a nominal policy has been computed. This separation between shielding and training
often allows recomputing the shield only when environment conditions or specifications
change. The challenge in post-shielding is to still ensure correctness and minimal interference
– with only black-box runtime access to the nominal policy. As a result, existing shielding
frameworks have primarily focused on safety, where synthesizing maximally permissive
shields (i.e., ‘inherently’ minimally interfering) is tractable [2,31,46]. Post-shielding for richer
specifications, particularly those involving liveness, has remained largely unaddressed.

However, the need for shields which enforce the full class of ω-regular specifications
naturally arises in CPS applications (e.g. in autonomous driving [36, 37], or mobile robot
navigation [32,33]) and requires to not just ensure safety, i.e., that nothing bad every happens,
but to also enforce liveness, i.e., that something good eventually happens. At the same
time, autonomous CPS must frequently adapt to changing conditions at runtime, e.g. due to
actuator failures, evolving mission objectives, or updated optimization criteria. Moreover,
different operational contexts may demand different levels of specification enforcement: at
times, liveness properties must be satisfied urgently (e.g., reaching a goal zone), while in
other situations, adhering closely to mission-specific performance objectives may take priority.
This motivates the need for dynamic post-shielding, where the shield can be dynamically
adapted, modified or interference-tuned in real time, while still ensuring correctness of the
shielded policy w.r.t. the full class of ω-regular specifications.

The STARs Approach. To close this gap, this paper presents STARs – Strategy-Template-
based-Adaptive-Runtime-Shields – a dynamic post-shielding framework which enforces the
full class of ω-regular specifications over pre-computed (e.g. learned) probabilistic policies,
schematically depicted in Fig. 1. While it is known that deterministic policies suffice for
optimality in finite MDPs with stationary rewards [44], modern RL algorithms typically
learn stochastic policies for stability, generalization, and robustness [20,49,50]. Moreover,
stochasticity enables graded runtime enforcement, which is essential for smoothly tuning
interference levels in STARs. In addition, STARs can adapt to incrementally updated
specifications or actuator failures at runtime, making them suitable for CPS applications.

Shielding for ω-regular specifications requires enforcing liveness properties in addition to
safety shielding. This is challenging, as liveness properties (i) do not easily lend themselves
to permissive strategies needed for minimal interference, and (ii) only manifest themselves
in the infinite limit, hardening their enforcement at runtime given only a finite prefix.
STARs overcome these challenges by utilizing strategy templates [4], which have recently
been introduced as an alternative representation of strategies in two-player parity games
(resulting from an ω-regular specification) and can be computed with the same worst-case
complexity as classical strategies. Strategy templates condense an infinite number of winning
strategies into a simple and efficiently computable data structure, which is (i) truly permissive,
enabling minimal inference shielding, and (ii) localizes required future progress (over a known
transition graph 1), enabling a purely history-induced evaluation of liveness properties. In
addition, strategy templates are known to be easily composable and robust to the sporadic
or persistent unavailability of actions at runtime. This naturally enables the resulting shield
to robustly adapt to such scenarios at specification updates and actuator failures at runtime.

Dynamic Interference. In addition to the robustness and adaptation properties that

1 We only need access to the graph structure, not to transition probabilities, rewards or computed policies.
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Figure 1 Overview of STARs synthesis (left) and runtime-application of STARs (right) as
formalized in Sec. 3. The detailed operation of STARs is illustrated in Fig. 3. Cyan components are
taken from the literature and purple components illustrate the dynamic adaptability of STARs.

STARs inherent from strategy templates, they implement an orthogonal and novel way of
dynamic post-shield adaptation, that we term dynamic interference. Dynamic inference is
inspired by multi-objective optimization, where different optimal policies are superposed –
using weights the resulting blended policies can be biased towards particular optimization
criteria. In the same spirit, we equip STARs with an enforcement parameter γ to bias the
blending of a nominal policy with additional liveness obligations enforced by the shield (see
Sec. 3.2 for a formalization and Fig. 3 for a visualization of this idea). Taking advantage of the
fact that learning algorithms typically output a state-depended probability distribution over
actions which classifies actions w.r.t. their achievable reward, STARs bias these probability
distributions towards (additionally) satisfying liveness obligations ‘eventually’, allowing to
remain ϵ-close to the optimal reward if a small enforcement parameter γ is chosen. At the
same time, we allow γ to be tuned online as different operational contexts may demand
different biases – e.g. enforcing to reach the charging station urgently when the energy level
is critical, while allowing optimized mission-specific performance under low-risk conditions.
Following the STARs. To illustrate the effect of a policy which follows a STARs, we use a
FactoryBot benchmark depicted in Fig. 2. In FactoryBot, the nominal agent policy
optimizes a reward function and STARs are used to guide the agent towards satisfying (gen-
eralized) Büchi objectives2. FactoryBot simulates multiple OpenAI Gym [11] benchmarks,
such as frozen lake, taxi or cliff walking, typically used to evaluate RL policies and represents
a simplified version of the snake example used to evaluate a dynamic safety shield [31].

In contrast to [31], where only the underlying policy was allowed to change dynamically,
we provide a GUI for the user to dynamically interact with the shielding mechanism via (i)
manual adjustment of the enforcement parameter γ, (ii) manual selections of wall placements,
which induce safety objectives, and (iii) manual addition of orange and green tiles, which
induce co-Büchi and (generalized) Büchi objectives. This results in re-computations of STARs
online and hence adapting the shields dynamically. In addition, whenever the robot follows
the STARs, it is not only ‘safety shielded’ from bumping into walls, but also ‘liveness shielded’
towards visiting Büchi states with a frequency determined by the enforcement parameter γ.

In Fig. 2, the green cells denote the Büchi region B, and the numbers inside the cells are
the rewards received upon entering them. The agent must visit B, while maximizing the
average reward. The images show the agent’s heatmap, when allowed to run without a shield
(Fig. 2a), with a shield with low (Fig. 2b) and high γ (Fig. 2c), and on online addition of a
Büchi objective (Fig. 2d).
Related Work. While the synthesis of permissive strategies for ω-regular objectives has
received substantial attention in recent years [4,9,10,18,29], and strategy templates [4,5] have

2 We note, that this choice of simple objectives is for illustration only. Our algorithm can handle the full
class of ω-regular objectives compiled into a parity automaton.
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(a) Unshielded (b) Low γ (c) High γ (d) Incremental

Figure 2 GUI showing STAR-shielded robot for an instance from FactoryBot. Recording of
this shielding scenario is available at https://ritamraha.github.io/MARG/.
been applied to various problems in reactive synthesis [3, 6, 38,39,43,48], these techniques
have, to the best of our knowledge, not been used in the context of shielding.

Post-shielding approaches have so far focused mainly on safety shielding, where our
work is the closest related to [2, 31, 46]. Similar ideas are also used for policy repair w.r.t.
safety violations [42, 52, 53, 59] or via (partial) re-synthesis [41, 54]. In contrast, STARs
directly inherent robustness and adaptability properties of strategy templates that typically
circumvent the need for strategy repair and achieve necessary strategy adaptations directly
via shielding. For general ω-regular specifications, our work is closely related to the runtime
optimization [7] which propose a similar blending of a nominal policy with an additional
liveness objective, however, via a very different shield synthesis technique. In contrast to
our work, the shield synthesized in [7] uses a fixed enforcement parameter, does not exploit
probabilistic policies, and allows no dynamic adaptation in the specification or in the graph.

In addition, this paper shares ideas with approaches that synthesize policies which
satisfy a quantitative mean-payoff objective alongside an ω-regular constraint defined over
the same game graph [1, 57], which are closely related to pre-shielding frameworks, e.g.
[12,21,28,34,40,56]. Achieving similar optimality results in post-shielding is much harder.
Owing to the maximally permissive characteristics of STARs, the expected reward of shielded
policies can still be brought arbitrary close to the non-shielded optimal value whenever the
entire winning region is a strongly connected component (we discuss this formally in Sec. 4).
We note that existing post-shielding frameworks also assume excess to the underlying MDP
or do not guarantee correctness. To overcome this limitation, abstractions which both over-
(for safety) and under- (for liveness) approximate the MDP while still allowing to quantify
minimal interference, are needed. This is a challenging direction for future work.
Contributions and Outline. This paper presents a novel dynamic post-shielding framework
for the full class of ω-regular objectives. In particular, we present STARs and prove their
soundness and minimally interfering properties in Sec. 3. We then consider RL policies learned
to maximize discounted or average reward in Sec. 4 and prove that we can always pick an
enforcement parameter γ s.t. the expected reward of a shielded policy is arbitrarily close to the
optimal reward achieved by the non-shielded policy. Finally, we present experimental results
over the already introduced FactoryBot benchmark in Sec. 5. Due to page constrains, the
formal proofs of all statements have been moved to the appendix.

2 Preliminaries

This section provides a brief overview of notation and basic concepts.
Notation. We denote by R the set of real numbers and [a; b] represents the interval
{a, a + 1 · · · , b}. We write Σ∗ and Σω to denote the set of finite and infinite sequences of

https://ritamraha.github.io/MARG/
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elements from a set Σ, respectively. A probability distribution over a finite set S is denoted as
a function µ : S 7→ [0, 1] such that

∑
s∈S µ(s) = 1. The set of all probability distributions over

S is denoted as D(S). The support of a distribution µ is the set supp(µ) = {s ∈ S | µ(s) > 0}.
Given two distributions µ1, µ2 ∈ D(S), the total variation distance between µ1 and µ2 is
defined as: DTV(µ1, µ2) = 1

2
∑

s∈S |µ1(s) − µ2(s)|. Given any function µ : S 7→ R, we use
N (µ) ∈ D(S) to denote its normalized distribution: N (µ)(s) = µ′(s)∑

s′∈S
µ′(s′)

, where µ′(s′) =

max(µ(s′), 0).

Markov Decision Process. A Markov Decision Process (MDP) is a tuple M = ⟨Q, A, ∆, q0⟩
where Q is a finite set of states, A is a finite set of actions, ∆ : Q × A 7→ D(Q) is a (partial)
transition function and q0 ∈ Q is the initial state. For any state q ∈ Q, we let A(q) denote
the set of actions that can be selected in state q. A strongly connected component (SCC) of
an MDP M is a maximal set of states Q′ ⊆ Q such that for every pair of states q, q′ ∈ Q′,
there exists a path from q to q′ in Q′ with non-zero probability.

Given a state q and an action a ∈ A(q), we denote the probability of reaching the successor
state q′ from q by taking action a as pr(q′|q, a). A run ρ of an MDP M is an infinite sequence
in Q × (A × Q)ω of the form q0a0q1 . . . such that pr(qi+1|qi, ai) > 0. A finite run of length
n is a finite such sequence κ = q0a0 . . . qnan or κ = q0a0 . . . qn. We write ρ[i] to denote the
ith state-action pair (qi, ai) appearing in ρ, ρ[i; j] to denote the infix qiai . . . qj for j ≥ i,
and ρ[j; ∞] to denote the suffix qjaj . . .. These notations extend to the case of finite runs
analogously. We write RunsM (resp. FRunsM ) to denote the set of all infinite (resp. finite)
runs of M . We denote the last state of a finite run ρ as last(ρ).

A policy (or, a strategy) in an MDP M is a function σ : FRunsM 7→ D(A) such that
supp(σ(ρ)) ⊆ A(last(ρ)). Intuitively, a policy maps a finite run to a distribution over the set of
available actions from the last state of that run. A policy is stochastic if |supp(σ(κq))| = A(q)
for every history κq. A run ρ = q0a0q1 . . . is a σ-run if ai ∈ supp(σ(q0a0 . . . qi)). Given a
measurable set of runs P ⊆ RunsM , Prσ[P ] is the probability that a σ-run belongs to P . We
use RunsMσ

to denote the set all σ-runs and define the set of all policies over M as ΠM .
Let M be a set called memory. A policy σ with memory M is represented as a tuple

(M, m0, α, β) where m0 ∈ M is the initial memory value, α : M × Q 7→ M is the memory
update function, and β : M × Q 7→ D(A) is the function prescribing the distribution over
the next set of available actions. A policy σ is said to be a finite memory policy if M is
a finite set. It is called stationary if M = ∅, i.e., the choice of action only depends on the
state. Given a finite run (or history) κ, a state q and an action a ∈ A(q), σ(κq, a) = pr(a|κq)
denotes the probability that σ assigns for choosing the action a from state q with history
κ. If σ is stationary, we will write σ(q, a) instead of σ(κq, a). Given a random variable
f : RunsM 7→ R, we denote by Eq

Mσ (f) the expectation of f over the runs of M originating
at state q that follow σ. We instead write Eq

σ(f) when M is clear from the context.

(Stochastic) Games on Graphs. A stochastic game graph is a tuple G = (Q = Q⃝ ∪
Q□ ∪ Q△, E) where (Q, E) is a finite directed graph. For every state q ∈ Q, we denote the
set of all available edges from q as E(q) and assume |E(q)| > 0 for all q ∈ Q. Further, for
♢ ∈ {⃝,□, △}, we define E♢ = {(q, q′) ∈ E | q ∈ Q♢}.

A stochastic game involves three players: ‘system’ (⃝), ‘environment’ (□), and ‘random’
(△). They take turns moving a token along states, forming a path. When the token is at a
state in Q⃝ (resp. Q□), the system (resp. environment) player chooses one of its successors
to move the token. At a state in Q△, the random player moves the token to one of its
successors following a known or unknown probability distribution, selecting uniformly at
random. Stochastic game graphs are often called 2 1

2 -player game graphs. If Q△ = ∅, Q□ = ∅,
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or Q□ = Q△ = ∅, they reduce to 2-player, 1 1
2 -player, and 1-player game graphs, respectively.

Game graphs without a random player are called deterministic.
Given a stochastic game graph G, a run (or play) ρ over G is an infinite sequence of

states q0q1 . . . ∈ Qω. We write InfQ(ρ) (resp. InfE(ρ)) to denote the set of all states (resp.
edges) which occur infinitely often along ρ. We collect all runs over G in the set RunsG. A
strategy for player ♢ ∈ {⃝,□, △} over G is a function σ♢ : Q∗ × Q♢ → D(Q) that describes
a probability distribution over next available moves to the successor states based on the
history of the current run. Given a system player strategy σ, a run ρ is said to comply
with σ, i.e., be a σ-run, if qi+1 ∈ supp(σ(q0 . . . qi)) holds for all qi ∈ Q⃝ along ρ. Given a
measurable set of infinite runs P ⊆ RunsG, Prσ[P ] is the probability that a σ-run belongs to
P . We use RunsGσ

to denote the set of all σ-runs over G.
ω-Regular Objectives and (Almost) Sure Winning. Given a game graph G, a winning
condition (or objective) is defined as a set of runs Φ ⊆ RunsG. An ω-regular objective can
be canonically represented by a parity objective (possibly with a larger set of states [8])
Φ = Parity[c] which is defined using a coloring function c : Q → [0; d] that assigns each state
a color. The parity objective Parity[c] contains all runs ρ ∈ RunsG for which the highest
color (as assigned by the coloring function c) appearing infinitely often is even. Formally,
Parity[c] = {ρ ∈ RunsG | max{c(q) | q ∈ InfQ(ρ)} is even}. The parity objective Parity[c]
reduces to a Büchi objective, if the domain of c is restricted to two colors {1, 2}.

Given a game graph G and an objective Φ ⊆ RunsG, a run is said to satisfy Φ if it belongs
to Φ. A system player strategy σ is said to be surely (resp. almost surely) winning from a state
q in the game (G, Φ), if every σ-run from q satisfies Φ (resp. Pr(ρ ∈ Φ | ρ is a σ-run from q) =
1). We collect all such states from which a surely (resp. almost surely) winning strategy
exists in the winning region W•

Φ (resp. W◦
Φ). Furthermore, we say a strategy σ is surely (resp.

almost surely) winning in the game (G, Φ), denoted by (G, σ) |=• Φ (resp. (G, σ) |=◦ Γ), if it
is surely (resp. almost surely) winning from every state in the winning region.
Strategy Templates. Strategy templates [4] collect an infinite number of system player
strategies over a (stochastic) game in a concise data structure consisting of three types
of local conditions on the system player moves: safety, co-live and live-group templates.
Formally, given a game G = (Q, E), a strategy template (for the system player) is a tuple
Γ = (S, D, Hℓ) comprising a set of unsafe edges S ⊆ E⃝, a set of co-live edges D ⊆ E⃝ and
a set of live-groups Hℓ ⊆ 2E⃝ . A strategy template Γ over G induces a set of infinite runs

RunsΓ :=
{

ρ ∈ RunsG

∣∣∣∣∣ ∀e ∈ S : e ̸∈ ρ

∧ ∀e ∈ D : e ̸∈ InfE(ρ)
∧ ∀H ∈ Hℓ : src(H) ∩ InfQ(ρ) ̸= ∅ → H ∩ InfE(ρ) ̸= ∅

}

Intuitively, a run ρ ∈ RunsΓ satisfies the following objectives: (i) ρ never uses the unsafe
edges in S, and (ii) ρ stops using the co-live edges in D eventually, and (iii) if ρ visits the
set of source states of a live-group H ∈ Hℓ infinitely often, then it also uses the edges in
H infinitely many times. Given a game graph G, a strategy σ in G follows a template Γ if
(G, σ) |=• RunsΓ. If G is clear from the context we often abuse notation and write σ |=• Γ if
σ follows Γ. A strategy template Γ is said to be surely (resp. almost surely) winning in the
ω-regular game (G, Φ) if every strategy that follows Γ is surely (resp. almost surely) winning.

▶ Proposition 1 ( [4, 43]). Given a 2-player (resp. 2 1
2 -player) parity game (G, Φ), a surely

(resp. almost surely) winning strategy template Γ• (resp. Γ◦) for (G, Φ) can be computed
in time O(|Q|d+O(1)) (resp. O((|Q|d)d+O(1))). We denote the algorithm that computes a
winning strategy template by ParityTemplate⋆(G, Φ) with ⋆ ∈ {•, ◦}, realized by [4, Alg.3]
for Γ• and by [43, Alg.8] for Γ◦.
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Note that such winning strategy templates are always conflict-free, i.e., from any state, there
is always an edge that is neither unsafe nor co-live and for every source of a live-group, there
is always a live edge that is neither unsafe nor co-live (see [4] for details). For simplicity,
from now on, we assume that strategy templates are conflict-free.

3 STARs – Dynamic Post-Shielding for ω-Regular Objectives

This section formalizes our novel dynamic post-shielding framework via Strategy-Template-
based-Adaptive-Runtime-Shields (STARs) schematically depiced in Fig. 1.

3.1 Synthesizing STARs
As depicted in Fig. 1, an essential step in the construction of STARs is the synthesis of
winning strategy templates via the ParityTemplate algorithm from [4, 43] in a game
derived from the transition structure of the underlying MDP M . Dependent on whether
STARs should enforce the additional ω-regular specification Φ almost surely or surely, we
abstract M either into a 1 1

2 - or a 2-player game graph. Thereby, sure satisfaction treats the
randomness of the MDP fully adversarial, i.e., by a second deterministic player, while almost
sure satisfaction allows to keep the process random3.

▶ Definition 2. Given an MDP M = ⟨Q, A, ∆, q0⟩ we define the 2-player (resp. 1 1
2 -

player) game graph induced by M as the tuple GM
• = (Q⃝ ∪ Q□, E⃝ ∪ E□) (resp. GM

◦ =
(Q⃝ ∪ Q△, E⃝ ∪ E△) ) s.t. for ♢ ∈ {□, △}:

Q⃝ := Q, Q♢ := {qa
♢ | a ∈ A(q) and q ∈ Q},

E⃝ := {(q, qa
♢)|a ∈ A(q)}, and E♢ := {(qa

♢, q′)|pr(q′|q, a) > 0}.

Given a game graph GM
⋆ and a parity objective Φ over GM

⋆ , we use ParityTemplate⋆

(Proposition 1) to compute winning strategy templates Γ⋆ for (GM
⋆ , Φ). Hence, any strategy

that follows Γ⋆ will be surely (if ⋆ = •) or almost surely (if ⋆ = ◦) winning in (G⋆, Φ).
▶ Remark 3. We remark that assuming Φ to be directly defined over GM

⋆ is not restrictive.
Any ω-regular property φ with propositions interpretable as subsets over Q can be converted
into a parity game (Gφ, Φφ) which can be combined with GM

⋆ through a simple product.
By restricting attention to the setting discussed in Rem. 3, we slightly abuse notation and

interpret a template Γ⋆, computed over a game graph GM
⋆ , directly over the original MDP

M . That is, we convert every edge (q, qa
♢) constrained by the template into a constrained

state-action pair (q, a). This results in a template Γ⋆ = (S, D, Hℓ) where S ⊆ Q × A,
D ⊆ Q × A and Hℓ ⊆ 2Q×A. Further, we say that a policy σ in M follows a template Γ⋆ if
the corresponding strategy in GM

⋆ follows the template.

3.2 Dynamical Interference via STARs
Given a strategy template Γ⋆ = (S, D, Hℓ) which is winning for the parity objective Φ
interpret over an MDP M , STARs dynamically blend a given nominal policy σ with the
safety and liveness obligations of Φ localized in Γ⋆ as depicted in Fig. 3.

Intuitively, to comply with the safety template S, STARs set the probabilities of unsafe
actions to zero, thereby preventing runs to reach states from where Φ cannot be satisfied. For
each edge in the co-live group D, STARs maintain a counter that tracks how many times the

3 The 1 1
2 game is still constructed without access to ∆ – almost-sure winning is independent of probabilities.
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Figure 3 Illustration of dynamic interference via STARs. Length of arrows indicate the relative
probability of the corresponding action in µ ∈ D(A(q)). The strategy template Γ = (S, D, Hℓ) is
illustrated via colors red (S), orange (D) and green (Hℓ). Blending applies (1b) in Def. 5, bounding
applies (1a) in Def. 5 and normalizing applies standard normalization, respectively.

edge has been sampled. Each time the edge is sampled, its probability is reduced, ensuring
that runs eventually avoid co-live edges. Similarly, for each live group Hℓ, STARs maintain
a counter to track how many times the policy visits the source states of the group without
sampling any of its corresponding actions. With each such visit, the shield incrementally
increases the probability of sampling these actions based on the counter value. This guarantees
that eventually, one of the actions in the live group is sampled (with probability close to 1)
if its source states are visited often enough. Once an action is sampled, the corresponding
counter is reset, and the process repeats.

In order to formalize the above intuition, we first formally define the history-dependent
counter function for co-live and live groups discussed above.

▶ Definition 4. Let M be an MDP and Γ = (S, D, Hℓ) a strategy template interpreted over
M . Further, let κ = q0a0q1a1 . . . qnan ∈ FRunsM be a finite run over M . Then we define
for all (q, a) ∈ D: count(q,a)(κ) := |{i | κ[i] = (q, a)}|, and for all H ∈ Hℓ: countH(κ) :=
|{i > maxpref κ

H | κ[i] ∈ {(q, a) | q ∈ src(H)}}|, where maxpref κ
H := j such that κ[j] ∈

H and κ[j; ∞] ∩ H = ∅.

The counters defined in Def. 4 allow us to formally define how a STAR modifies the
probability distribution µ(A(q)) over actions chosen by σ in the current state q reached with
history κ using a template Γ⋆. Intuitively, the bias towards satisfying Φ introduced by the
counter-based modification of µ(A(q)) can be tuned by an enforcement parameter γ, and a
threshold parameter θ, which can be changed dynamically at runtime.

▶ Definition 5 (STARs). Fix an MDP M , a finite run κ ∈ FRunsM with q = last(κ), a
strategy template Γ interpreted over M , an enforcement parameter γ, and a threshold θ.
Then, the probability distribution µ ∈ D(A(q)) induces a shielded distribution µ ∈ D(A(q))
with µ := N (µ′) s.t. for all a ∈ A(q)

µ′(a) :=

{
0 if N (µ′′)(a) ≤ θ,

N (µ′′)(a) otherwise.

(1a)

µ′′(a) :=


0 if (q, a) ∈ S,

µ(a) − γ · count(q,a)(κ) if (q, a) ∈ D,

µ(a) + γ · countH(κ) if (q, a) ∈ H, H ∈ Hℓ.

(1b)

We write µ = STARs(µ, κ, Γ, γ, θ) to denote that µ is obtained from µ via (1).

The effect of shielding a policy as formalized in Def. 5 is illustrated in Fig. 3. Intuitively,
(1b) ensures that the probability of taking certain actions in state q is adapted via the
counters induced by the history of the current run and the enforcement parameter γ. If γ is
close to 1 these updates are very aggressive. If γ is close to 0 they are very mild. As the
resulting function µ′′ is not a probability distribution anymore (as probabilities over A(q) do
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not sum up to 1), we use its normalized version in (1a) to impose the threshold θ > 0 to
make sure that a live edge is surely taken after a finite number of time steps (dependent on
γ and σ). In the end, we normalize the resulting distribution to obtain the final distribution.
▶ Remark 6. We note that if there is an unsafe action a in S such that the current distribution
µ assigns a probability of 1 to it, i.e., µ(a) = 1, then µ as in Def. 5 will be not well-defined as
it assigns zero probability to all actions. This corner case can be handled by perturbing the
distribution µ slightly, e.g., by adding a small ε > 0 to all actions before applying STARs.

Given the formalization of a shielded probability distribution in Def. 5 the definition of a
shielded policy immediately follows.

▶ Definition 7. Given any MDP M , a strategy template Γ interpreted over M , a threshold θ,
and an enforcement parameter γ > 0, a stochastic policy σ in M induces the shielded policy
σ|Γ,θ

γ : FRunsM 7→ D(A) s.t. σ|Γ,θ
γ (κ) = STARs(σ(κ), κ, Γ, γ, θ).

In order to avoid the corner case discussed in Rem. 6, the definition assumes that the
initial policy σ is stochastic, i.e., supp(σ(κq)) = A(q) for all histories κq. This is without loss
of generality as any deterministic policy can be converted into a stochastic one as discussed in
Rem. 6. Furthermore, as the resulting shielded policy is dependent on the history of a run, a
policy is actually shielded via STARs online while generating a shielded run, i.e., a σ|Γ⋆,θ

γ -run,
as illustrated in Fig. 1 (right). We emphasize that STARs never modify the underlying policy
and thereby maximize modularity between the nominal policy and constraint enforcement.

3.3 Correctness and Minimally Interference of STARs
This section shows that STARs indeed implement the fundamental shielding paradigm of
correct but minimal interference shielding.
Correctness of STARs follows directly from the fact that they are based on winning strategy
templates Γ⋆, which implies that the shielded policy σ|Γ⋆,θ

γ satisfies the objective Φ (almost)
surely, if it follows the template. It therefore remains to show that the shielded policy indeed
follows the template. As (1b) ensures that the shielded policy assigns zero probability to
unsafe edges and that the probability of taking co-live edges is reduced with each visit,
the shielded policy will never take an unsafe edge and will eventually avoid co-live edges.
Furthermore, as (1a) increments the counter for live groups each time the source states are
visited without any action from the group being taken, the shielded policy will eventually
take an action from the live group. In total, the shielded policy will follow the template Γ⋆

and therefore ensure that the shielded run satisfies Φ as formalized below.

▶ Theorem 8. Given the premises of Def. 7 it holds that σ|Γ⋆,θ
γ follows Γ⋆.

▶ Corollary 9. Given any MDP M , a stochastic policy σ over M and an enforecement
parameter γ > 0, let Γ⋆ := ParityTemplate⋆(GM

⋆ , Φ). Then, every σ|Γ⋆,θ
γ -run from the

winning region of Φ satisfies Φ surely/almost surely (depending on ⋆).

Minimal interference of STARs is, unfortunately, less straight forward to formalize. Based
on existing notions of minimal interference, we characterise two orthogonal notions: (i) a
minimal deviation in the distribution of observed histories, and (ii) a minimal expected
average shielding cost measured in the expected number of non-optimal action choices.

History-based minimal interference is inspired by a similar notion from [17] for safety
shields: an action must be deactivated after a history κ, if and only if there exists a nonzero
probability that the safety constraint would be violated in a bounded extension of κ, regardless
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of the agent’s policy. This argument extends to STARs for both safety and co-live templates,
ensuring minimal interference in these settings. However, defining minimal interference for
liveness templates is more challenging due to their inherently infinite nature, making bounded
violations inapplicable. Instead, we establish minimal interference by showing that for any
bounded execution κ that can be extended to a run that satisfies the liveness template, the
probability of observing κ in the shielded execution remains close to its probability under the
nominal policy. Formally, for κ ∈ FRunsM , we define κ |= pref(Φ) if there exists an infinite
run ρ ∈ RunsM such that ρ |= Φ and κ is a prefix of ρ. We let Prσ(κ) denote the probability
of observing κ in the execution of a policy σ in M and establish the following result.

▶ Theorem 10. Given the premises of Cor. 9 with σ′ = σ|Γ⋆,θ
γ , for any ε > 0 and for all

length l ∈ N, there exist parameters γ, θ > 0 such that for all histories κ of length l with
κ |= pref(Φ), it holds that Prσ′(κ) > Prσ(κ) − ε.

Minimal shielding costs are inspired by a similar notion in [7], where a cost function is used
to measure how much a (deterministic) shield changes the action choices of a (pure) nominal
policy. A natural extension of this notion to stochastic policies is to define a shielding cost
based on the distance between the distributions of the actions taken by the shielded and the
nominal policies. Thereby, the shielding cost can also vary depending on the history of the
run, allowing for a more fine-grained analysis as in [7]. To formalize this intuition, we define
a history-based cost function cost : FRuns → [0, W ] that assigns a cost to the history κ and
the cost of shielding the policy σ at κ is defined as cost(κ, σ, σ′) = cost(κ) · DTV(σ(κ), σ′(κ)).
This cost captures the interference as the difference between the action distributions of the
original and shielded policies based on the cost of shielding the policy at κ. This can be
generalized to the cost of a run ρ as cost(ρ, σ, σ′) = lim supl→∞

1
l

∑l−1
i=0 cost(ρ[0; i], σ, σ′),

which captures the average cost of the differences between the two policies over the run.
In the following, we show that the expected average cost of these differences stays below ε

for liveness templates. More precisely, we show that the expected average cost of the shielded
policy is bounded whenever the template considered only contains liveness templates.

These restrictions are needed because the shielded policy may have to stop (or eventually
stop) taking certain actions—such as unsafe or co-live ones—to satisfy the ω-regular constraint.
So, we can guarantee minimal interference with respect to the cost function as long as the
original policy doesn’t include any of these actions. This is ensured by using a strategy
template that has no unsafe or co-live actions.

▶ Theorem 11. Given the premises of Cor. 9 with σ′ = σ|Γ⋆,θ
γ such that Γ⋆ = (∅, ∅, Hℓ), and

a cost function cost : FRunsM → [0, W ], for any ε > 0, there exist parameters γ, θ > 0 such
that the following holds: Eρ∼σ′cost(ρ, σ, σ′) < ε.

We note that the corner case discussed in Rem. 6 does not compromise these results. In
Thm. 10, any history κ satisfying κ |= pref(Φ) inherently avoids unsafe actions. In Thm. 11,
the assumption that the strategy template excludes unsafe and co-live actions ensures that
the bound on the expected average cost remains valid.

3.4 Dynamic Adaptations of STARs Beyond Dynamic Interference
So far, we have considered a shielding scenario for a static parity objective Φ. However, a
major strength of strategy templates is their efficient compositionality and fault-tolerance,
which allow for further dynamic adaptations of STARs.

Compositionality facilitates the incremental integration of multiple ω-regular specifications
into STARs. By using the existing algorithm ComposeTemplate from [4, Alg.4] we can
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compute STARs for generalized parity constraints of the form Φ = ∧k
i=1Φi, where each Φi

represents a parity constraint over GM
⋆ . Crucially, these objectives Φi may not be available

all at once but might arrive incrementally over time, leading to the need to update the
applied shield at runtime. As ComposeTemplate simply combines strategy templates for
all objectives into a single (non-conflicting) template, Thm. 8 and Thm. 10 also apply in this
case, as long as the run is in the combined winning region of all objectives during the update.

Fault-tolerance ensures that STARs can handle the occasional or persistent unavailability
of actions correctly. Concretely, persistent faults are addressed by marking actions as unsafe
and resolving conflicts as needed (see [4, Alg.5]), while occasional faults are handled by
temporarily excluding the unavailable actions from the template (see [4, Sec.5.2]).
▶ Remark 12. A common assumption in robotic applications is that (incrementally arriving)
liveness specifications are satisfiable from every safe node in the workspace [15, 19, 27, 41,54]
– most robotic systems can simply invert their path by suitable motions to return to all
relevant positions in the workspace. Using the common decomposition of ω-regular objectives
φ into a safety part φs and a liveness part φℓ, one can restrict the newly arriving objectives
to liveness obligations only. In this case, incremental synthesis never leads to an decreased
winning region in such robot applications. This is in fact the case in the incremental instances
considered in the FactoryBot benchmark used for evaluation (see Sec. 1 and Sec. 5).

4 Maintaining Optimal Rewards while Shielding

While Sec. 3 formalizes and proves correctness and minimal interference of STARs, this
section strengthens this result further, i.e., we show that whenever nominal policies have been
computed to optimize a given reward function (under certain assumptions), STARs produce a
shielded policy which achieves a reward which is ϵ-close to the nominal one while additionally
guiding the agent to (almost) surely satisfy an ω-regular correctness specification.

In order to formalize these strong optimality properties of STARs, we introduce additional
notation. An optimal policy over an MDP is typically computed (e.g. via reinforcement
learning (RL)) by associating transitions with so-called reward functions. Typically, these
reward functions are Markovian, which assign utility to state-action pairs. Formally, a
rewardful MDP is denoted as a tuple (M, r) where M is an MDP equipped with a reward
function r : Q × A 7→ R. Such an MDP under a policy σ determines a sequence of random
rewards r(Xi, Yi) for i ≥ 0, where Xi and Yi are the random variables denoting the ith state
and ith action, respectively. Given a rewardful MDP (M, r) with initial state q0 and a policy
σ, we define the discounted reward and the average reward via

Discq0
σ (λ) := limN→∞ Eq0

σ

(∑
0≤i≤N λir(Xi, Yi)

)
with λ ∈ [0, 1], and (2a)

Avgq0
σ := lim supN→∞

1
N Eq0

σ

(∑
0≤i≤N r(Xi, Yi)

)
. (2b)

For any reward function, we define the optimal reward to be the maximum reward achievable
by a policy σ. We call every policy that achieves the optimal reward an optimal policy. A
policy σ is ε-optimal if it achieves a reward that is at least ε less than the optimal reward.

4.1 Discounted Rewards
When policies are trained to maximize a discounted reward, as formalized in (2a), the impact
of obtained rewards decreases with time. Therefore, the optimal reward achievable by a
policy over a given MDP significantly depends on the bounded (initial) executions possible
over this MDP. As Thm. 10 shows that the probability of observing a bounded execution
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remains close to its probability under the original policy, the ε-optimality of a shielded
optimal policy can be obtained as a direct consequence of Thm. 10 when discounted rewards
are used during training. In particular, the discounted reward of the shielded policy remains
close to the discounted reward of the original policy as formalized below.

▶ Theorem 13. Given the premises of Cor. 9 with σ′ = σ|Γ⋆,θ
γ and W⋆

Φ = Q, for every ε > 0,
there exist parameters θ, γ > 0 such that the following holds: Discq0

σ′(λ) > Discq0
σ (λ) − ε.

▶ Remark 14. We remark that the assumption W⋆
Φ = Q in Thm. 13 is not restrictive for two

main reasons. First, if W⋆
Φ ⊊ Q, we can use W⋆

Φ as an additional constraint in existing safe
reinforcement learning frameworks. For instance, one can use preemptive safety shielding
proposed in [2]. This allows to learn an optimal policy within W⋆

Φ which directly allows
to transfer the results from Thm. 13. Second, we recall the discussion of Rem. 12 to note
that including the safety-part of the objective into the learning process does not harm the
incremental adaptation of STARs when new (liveness) specifications arrive.

4.2 Average Rewards
We now consider the scenario that policies where trained to maximize the average reward,
as formalized in (2b). In contrast to policies which optimize a discounted reward, optimal
average reward policies do not put special emphasis on bounded (initial) executions. On the
contrary, the optimal average reward is equivalently impacted by rewards collected over the
entire (infinite) length of runs compliant with the policy. This implies, that a policy can
only satisfy an ω-regular property (almost) surely and optimize the average reward, if it can
‘switch’ between their satisfaction by alternating infinitely often between finite intervals which
satisfy either one. This, however, is only possible if the underlying MDP is ‘nice’ enough to
allow for this alternation. In particular, to retain the modularity of shielding with STARs,
we demand to be able to shield a policy over an MDP ‘blindly’, i.e. without assuming access
to the reward-structure over M or knowledge of the actual policy. We therefore demand,
in addition to W⋆

Φ = Q assumed in Thm. 13 (further discussed in Rem. 14), that W⋆
Φ is a

strongly connected component (SCC). With this assumption, we achieve ε-optimality of the
average reward for the special class of Büchi objectives as a consequence of Thm. 11.

▶ Theorem 15. Given the premises of Cor. 9 with σ′ = σ|Γ⋆,θ
γ , Büchi objective Φ, and SCC

W⋆
Φ = Q, for every ε > 0, there exist θ, γ > 0 such that Avgq0

σ′ > Avgq0
σ − ε holds.

Unfortunately, the ε-optimality of shielded policies established for Büchi objectives in
Thm. 15 does not directly generalize to parity conditions. To ‘blindly’ shield for the latter,
we require the following definition.

▶ Definition 16. Let M be an MDP and c : Q → [0; d] be a coloring function induced
by a parity condition Φ over M . Let Q̃ ⊆ Q be an SCC. We say Q̃ is ⋆-good w.r.t. Φ if
q ∈ {Q̃ | c(q) is odd} implies q ∈ W⋆

φgood
, where φgood := {ρ ∈ RunsM |

Q̃
| ∃n ≥ 0 : c(ρ[n]) >

c(q) and is even}, i.e., from every odd state in Q̃, the system player can surely/almost surely
visit a higher even state in Q̃.

It is known that the optimal average reward achievable over an MDP M while (almost)
surely satisfying a parity condition Φ reduces to (i) finding all ⋆-good SCC’s of M w.r.t. Φ,
(ii) computing the optimal average reward of each ⋆-good SCC, and (iii) enforcing reaching a
⋆-good SCC with the highest achievable optimal average reward (see [1] for details). As a
consequence, the results of Thm. 15 carry over to parity objectives if Q is a ⋆-good SCC.
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In addition, within ⋆-good SCCs, the full expressive power of strategy templates is not
required—adding co-live templates D does not yield additional winning strategies. This is
because for any state q, if q′ is a state with the maximal color reachable (almost) surely from q,
then c(q′) must be even; otherwise, by definition of a ⋆-good SCC, a higher even-colored state
would be (almost) surely reachable. Consequently, winning strategy templates over ⋆-good
SCCs only require live-groups to reach maximum (even) color states from each state (see
App. B for details). It follows that ParityTemplate⋆(GM

⋆ |
Q̃

, Φ) contains only live-groups
and unsafe edges, as in the Büchi case. The following result is thus a direct corollary of
Thm. 15.

▶ Corollary 17. Given the premises of Cor. 9 with σ′ = σ|Γ⋆,θ
γ , parity objective Φ, and ⋆-good

SCC W⋆
Φ = Q, for every ε > 0, there exist θ, γ > 0 such that Avgq0

σ′ > Avgq0
σ − ε holds.

▶ Remark 18. We note that Rem. 14 directly transfers to Thm. 15 and Cor. 17. That is,
we can restrict the training of an optimal average reward policy to a (⋆-good-)SCCs and
shield the resulting policy with STARs therein. If we would like to maximize the state space
over which our shield is applicable, we can only restrict learning to W⋆

Φ, as in the discounted
reward case. We can then compute separate STARs for every ⋆-good SCC of a given MDP M

and an additional STARs synthesized for the objective to reach some ⋆-good SCC. However,
in order to ensure that the resulting shielded policy is optimal in the above sense, we would
need to enforce reaching the ⋆-good SCC with the highest achievable reward. Determining
this SCC would, however, need access to the reward structure of the MDP M which we
assume not to have. Hence, shielding ‘blindly’ in this case would still be minimally interfering
in the sense of Thm. 10 but not necessarily optimal in the sense of Cor. 17.

4.3 A Note on the Quality of Shielded Policies
Given the fact that Thm. 15 and Cor. 17 restrict attention to (⋆-good-)SCCs Q̃ ⊆ Q we note
that any stochastic policy σ satisfies Φ almost surely within Q̃ already without any shielding.
This is due to the fact that under stochastic policies all edges have positive probability of
being sampled and, therefore, infinite runs reach all states in the SCC almost surely. As the
maximum color in a (⋆-good-)SCCs is even, all runs satisfy Φ almost- surely. In practice,
however, the frequency with which even color vertices are seen is extremely low. While one
might suggest that perturbing the nominal policy σ might increase the frequency of visiting
even color states, this is actually not the case, as this perturbed policy would explore the
entire state space more aggressively. We show this effect via experiments in Sec. 5, where we
call the algorithm that implements the discussed naive perturbation of σ ApplyNaive.

In contrast, STARs modify probabilities in a targeted fashion. This (i) avoids visiting
odd-color vertices which are not optimal, and (ii) allows to tune the desired frequency in
which even color vertices are visited via the enforcement parameter. This can be formalized
using the notion of frequency of a run ρ visiting a set T of states which can be defined
as freq(ρ, T ) = 1

|Q| lim supl→∞
1
l |{i ∈ [0; l] | ρ[i] ∈ T}|. With this definition, the following

theorem4 ensures that the frequency of a run ρ visiting even color states can be increased by
tuning the enforcement parameter γ.

4 Note that this shows the existence of such parameters only for the case of surely satisfying Φ. For the
case of almost-sure satisfaction, the frequency would also depend on the transition probabilities of the
MDP and hence, we cannot guarantee the existence of such parameters for every δ, while the same
intuition still holds.
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Figure 4 Experimental evaluation summary (larger plots in App. C).
▶ Theorem 19. Given the premises of Thm. 15 with σ′ = σ|Γ•,θ

γ and T being the set of even
color states in the objective Φ, for every frequency 0 < δ ≤ 1, there exists parameters θ, γ > 0
such that for every run ρ ∼ σ′, it holds that freq(ρ, T ) ≥ δ.

5 Experiments

This section shows the utility of STARs for (post-)shielding a learned policy to satisfy
an ω-regular objective over the benchmark FactoryBot of grid worlds (see Fig. 2). As
described already in Sec. 1, the robot in FactoryBot is following a policy σ trained to
maximize the average reward collected over a randomly generated grid and a user can define
additional safety and liveness obligations (incrementally) through the provided GUI.

As the tools implementing the existing shielding approaches closest to STARs from
[31] and [7] are not accessible, we do not provide an empirical comparison. Instead, we
have implemented both ApplySTARs (our shielding algorithm depicted in Fig. 1) and
ApplyNaive (discussed in Sec. 4.3) in our Python-based prototype tool MARG (Monitoring
and Adaptive Runtime Guide) to compare their performance. Our experiments focus on the
evaluation of dynamic interference via the online-tuning of the enforcement parameter γ,
which is not supported by any existing technique.
Benchmark. The benchmark suite generates random grids based on the values of the
key parameters size, min_distance (∈ [0, 1]) and max_distance (∈ [0, 1]). The generated
instance is a size×size grid with randomly generated walls between the cells, in which
the region with positive rewards is minimum min_distance·size and maximum max_-
distance·size l1-distance away from every cell in the Büchi region. Due to resource
constraints, we generate grids with size between 5 and 13. We also generate two sets
of instances — Far with min_distance = 0.7 and max_distance = 0.9, and Close with
min_distance = 0.1 and max_distance = 0.2. Fig. 2 in Sec. 1 shows example instances for
a 6 × 6 grid in the category Far and Close.
Experimental Setup. We test ApplySTARs and ApplyNaive on 383 instances (189 in
Far and 194 in Close) to guide a robot. We first find a policy to maximize the average reward
without considering the Büchi objective. Then we apply ApplySTARs and ApplyNaive
on the learned policy. For every instance we measure the number of times the robot visits
the Büchi region and the average reward in 100,000 steps starting from a random initial
position in the grid for both approaches. The experiments were run on a 32-core Debian
machine with an Intel Xeon E5-V2 CPU (3.3 GHz) and up to 256 GB of RAM.
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ApplySTARs vs ApplyNaive. We evaluate the trade-off between the frequency of visiting
the Büchi region (henceforth, the Büchi frequency) and the average reward obtained by
the two shielding approaches. We observe that, in order to ensure higher average reward,
the robots need to spend more and more time in the region giving them positive reward
(henceforth, high payoff region, R). While ApplyNaive ensures visiting the Büchi region B
infinitely often in the long run, the robot aimlessly wanders around the grid always eventually
reaching B ’accidentally’. However, since STARs use strategy templates to guide the robot,
the steps towards B are guided. This allows ApplySTARs to waste fewer steps not collecting
the reward while visiting B.

This observation is substantiated by our evaluation. Fig. 4a plots the average Büchi
frequency (y-axis) for all instances that obtained an average reward that is ε-close to the
maximal possible reward in that instance, where ε ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} (x-axis). The
red line represents the averages for the robot shielded by ApplySTARs, and the dashed blue
line represents the same for the one shielded by ApplyNaive. We observe that ApplySTARs
can maintain a similar average reward as ApplyNaive, while ensuring a much higher Büchi
frequency. In addition, ApplyNaive does not allow to increase the Büchi frequency beyond
a very low level. On the other hand, by sacrificing on the average reward, ApplySTARs
allows attaining very high Büchi frequency.
Tuning γ. The previous section shows that ApplySTARs can be used to reach a very
high Büchi frequency when sacrificing optimality w.r.t. the obtained average reward. To
understand the actual trade-off between the Büchi frequency and obtained average reward,
we evaluated the effects of the enforcement parameter γ on both measures for instances
grouped into the categories Far and Close. As noted above, in order to increase the average
reward of a run, the robot needs to stay longer and longer in R. As the distance to B affects
the time it spends away from R, this measure directly impacts the average reward: the higher
the distance between B and R, the smaller should γ be to restrict the Büchi frequency, to
attain a given closeness ε to the average reward.

This theoretical dependence is supported by Fig. 4b which shows the Büchi frequency
(pink) and the proximity to the maximum average reward (green) attained by ApplySTARs
for a given enforcement parameter γ, over instances from Far (dashed) and Close (solid),
respectively. We observe that as the enforcement parameter increases, the Büchi frequency
increases while the average reward gets further away from the optimal for both classes of
instances. As expected, these trends have a higher slope on Far instances.
▶ Remark 20. We chose to only report on experiments with optimal average reward policies,
as discounted rewards are less challenging from a shielding perspective. Optimal discounted
reward policies crucially depend on the beginning of the robot trace, while ω-regular objectives
can be satisfied independently of any finite prefix (when started in the winning region). This
leads to a trivial shielding approach in the FactoryBot benchmark: one first chooses a
very low γ value in the beginning which is cranked up in the tail of the execution. While
this naturally gives a high performance w.r.t. both objectives, we want to emphasize that
this natural dynamic shielding of optimal discounted reward policies is only possible because
STARs allow for dynamic modifications of γ during runtime and is therefore also a major
advantage of our framework over existing techniques.
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A Proofs

▶ Theorem 8. Given the premises of Def. 7 it holds that σ|Γ⋆,θ
γ follows Γ⋆.

Proof. Let σ′ := σ|Γ⋆,θ
γ (for notational convinience) and ρ a σ′-run of M . We show that ρ

satisfies the template Γ⋆ = (S, D, Hℓ). As probability of an unsafe edge (q, a) ∈ S is set to
zero by σ′, the safety template S is satisfied.

Let’s assume that ρ does not satisfy the co-live template D. Then, there exists a co-live
edge e = (q, a) that appears in ρ infinitely many times. Let κq be a finite prefix of ρ such
that a has been sampled from q more than 1/γ times. Then, count(q,a)(κq) > 1/γ, which
means σ(κq, a) − γ · count(q,a)(κq) < 0. Consequently, the probability of choosing e after
history κq under σ′ becomes zero. Hence, ρ can not visit q more than 1/γ times, which
contradicts the assumption that ρ visits (q, a) infinitely many times. Thus, ρ satisfies the
co-live template D.

Next, suppose ρ does not satisfy the live-group template Hℓ. Then, there exists a live
group H ∈ Hℓ such that ρ visits the source states of H infinitely many times but does
not sample any action from H infinitely many times. Let q ∈ src(H) be a state that is
visited infinitely many times by ρ, and let q be a source state for live-groups H1, . . . , Hl

(with H1 = H). Suppose ρ does not satisfy the live-group template Hi for all i ≤ l′ and
satisfies Hi for all l′ < i ≤ l. Note that l′ > 1 as ρ does not satisfy H = H1. Then, for
every history κq of ρ after which ρ does not contain any co-live edge and for every action
a′ ∈ A′ = {a′ ∈ A(q) | (q, a′) ̸∈

⋃l′

i=1 Hi}, we have:

σ′(κq, a′) ≤
σ(κq, a) + γ ·

∑l
i=l′ countHi(κq)

1 + γ ·
∑l

i=1 countHi
(κq)

.

Furthermore, there exists a history κ′ of ρ after which ρ (does not use any co-live edge
and) visits q infinitely many times but never samples an action from any of the live-groups
H1, . . . , Hl′ . From that point on, the counter countHi

for i ≤ l′ is incremented unboudedly,
whereas the counter countHi

for i ≥ l′ is reset to zero infinitely many times. Consequently,
there exists a history κq of ρ (that is an extension of κ′) such that for every a′ ∈ A′, we have:

σ(κq, a′) + γ ·
∑l

i=l′ countHi
(κq)

1 + γ ·
∑l

i=1 countHi
(κq)

< θ.

By construction, σ′(κq, a′) = 0 for every a′ ∈ A′, and hence, σ′ has to sample an action
from A \ A′ at history κq. As all actions in A \ A′ are from the live-groups

⋃l′

i=1 Hi, this
contradicts the assumption that ρ does not sample from

⋃l′

i=1 after κ′. Thus, ρ satisfies the
live-group template Hℓ. ◀

▶ Theorem 10. Given the premises of Cor. 9 with σ′ = σ|Γ⋆,θ
γ , for any ε > 0 and for all

length l ∈ N, there exist parameters γ, θ > 0 such that for all histories κ of length l with
κ |= pref(Φ), it holds that Prσ′(κ) > Prσ(κ) − ε.

Proof. Let us fix an ε > 0 and a length l. Let κ = q0a0 . . . ql ∈ FRunsM be a history
such that κ |= pref(Φ). Clearly, for edges (q, a) ∈ S, (q, a) cannot appear in κ as then any
extension of κ will not satisfy Φ.

First, let σ(κ[0; i], ai) = xi and Pr(qi+1|qi, ai) = yi. Then it holds that Prσ(κ) =∏
0≤i≤l−1 xiyi. Note that whenever xi = 0 for any i ≤ l, then Prσ(κ) = 0 and hence,

Prσ′(κ) > Prσ(κ) − ε trivially holds. Let us therefore now consider the case where xi > 0 for
all i ≤ l.
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Now, for every i ≤ l, we have
∑

e∈D counte(κ[0; i]) ≤ l and
∑

H∈Hℓ
countH(κ[0; i]) ≤

|Hℓ| l. Hence, if σ′(κ[0; i], ai) = x′
i, by taking small enough θ, it holds that

x′
i ≥ xi − l · γ

1 + |Hℓ| l · γ
.

Thus, we have:

Pr
σ′

(κ) =
∏

0≤i≤l−1
x′

iyi ≥
∏

0≤i≤l−1

xi − l · γ

1 + |Hℓ| l · γ
· yi.

For x = min0≤i≤l−1 xi, we have:

Pr
σ

(κ) − Pr
σ′

(κ) ≤
∏

0≤i≤l−1
xiyi −

∏
0≤i≤l−1

xi − l · γ

1 + |Hℓ| l · γ
· yi

= Pr
σ

(κ) ·

1 −
∏

0≤i≤l−1

1 − l·γ
xi

1 + |Hℓ| l · γ


≤ Pr

σ
(κ) ·

1 −

(
1 − l·γ

x

1 + 1 |Hℓ| l · γ

)l


It now follows that by fixing an appropriate value for γ, one can bound the above expression
by ε. As the above expression is independent of the choice of history κ, we can conclude that
for every history κ of length l such that κ |= pref(Φ), it holds that: Prσ′(κ) > Prσ(κ) − ε. ◀

▶ Theorem 11. Given the premises of Cor. 9 with σ′ = σ|Γ⋆,θ
γ such that Γ⋆ = (∅, ∅, Hℓ), and

a cost function cost : FRunsM → [0, W ], for any ε > 0, there exist parameters γ, θ > 0 such
that the following holds: Eρ∼σ′cost(ρ, σ, σ′) < ε.

Proof. First let us show that the tuple of counter values can be bounded based on the
parameters θ and γ. As Γ⋆ = (∅, ∅, Hℓ), we only have counters for the live-groups in Hℓ.
Hence, the following claim formalizes the bound on the counter values.

▷ Claim 21. For parameters Kθ,γ = max
(

1, 1/θ−1
γ

)
, every counter value countH(κ) ≤ Kθ,γ

for every history κ and live-group H ∈ Hℓ.

Proof. By the construction of ParityTemplate⋆, as in [4, Alg. 3], every state q can be a
source state for at most one live-group H ∈ Hℓ. Hence, for a history κ ending in such a state
q, for every action a ∈ A(q) \ H, we have

σ′(κ, a) ≤ σ(κ, a)
1 + countH(κ) · γ

≤ 1
1 + countH(κ) · γ

.

Hence, whenever countH(κ) ≥ Kθ,γ , we have σ′(κ, a) ≤ θ and hence, by (1a), σ′(κ, a) = 0.
Therefore, for countH(κ) ≥ Kθ,γ , probability of sampling an action not in H becomes zero
and hence, an action from H will be sampled and hence, countH(κ) will be reset to zero. So,
the counter value countH(κ) ≤ Kθ,γ for every history κ. ◁

Now, w.l.o.g, let us assume that σ is a stationary policy in M as otherwise we can take
the product of M with the memory set of σ to ensure that σ is stationary in the product
MDP. Furthermore, σ′ is a stationary policy w.r.t. the extended MDP M ′ = ⟨Q′, A, ∆′, q′

0⟩
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obtained by taking product of the MDP with the tuples of counter values. Since σ is a
stationary stochastic policy in M , it is also a stationary stochastic policy in M ′.

Now, given an ε > 0 and a cost function cost : FRunsM → [0, W ], it holds that
cost(κ) ≤ W for every history κ. Hence, the following holds for stationary distribution dσ′

of σ′ in M ′:

Eρ∼σ′cost(ρ, σ, σ′) = Eρ∼σ′

[
lim sup

l→∞

1
l

l−1∑
i=0

cost(ρ[0; i]) · DTV(σ(ρ[0; i]), σ′(ρ[0; i]))
]

= W · Eρ∼σ′

[
lim sup

l→∞

1
l

l−1∑
i=0

DTV(σ(ρ[0; i]), σ′(ρ[0; i]))
]

= W · lim sup
l→∞

1
l

· Eρ∼σ′;|ρ|=l

[
l−1∑
i=0

DTV(σ(ρ[0; i]), σ′(ρ[0; i]))
]

= W · lim sup
l→∞

1
l

·
l−1∑
i=0

E(q,C)∼dσ′ [DTV(σ(q), σ′((q, C)))]

= W · E(q,C)∼dσ′ [DTV(σ(q), σ′((q, C)))] .

Evaluating the total variation distance DTV(σ(q), σ′((q, C))) gives us the following:

Eρ∼σ′cost(ρ, σ, σ′) = 1
2W · E(q,C)∼dσ′

∑
a∈A(q)

|σ(q, a) − σ′((q, C), a)| . (3)

Then, as Γ⋆ = (∅, ∅, Hℓ), if σ′′((q, C), a) is the distribution obtained as in (1b) before bounding
the probabilities by θ, then the following holds:

σ′′((q, C), a) ≥ σ(q, a)
1 + |C| γ

and σ′′((q, C), a) ≤ σ(q, a) + |C| γ

1 + |C| γ
,

where |C| denotes the sum of the counters in C.
This means, after bounding the probabilities by θ, if σ′′((q, C), a) < θ, then σ′((q, C), a) =
0 = σ′′((q, C), a) − θ, and if some probabilities are bounded by θ, then σ′((q, C), a) ≤
σ′′((q, C), a) + |A(q)| · θ. Hence, it holds that:

σ′((q, C), a) ≥ σ′′((q, C), a) − θ and σ′((q, C), a) ≤ σ′′((q, C), a) + |A(q)| · θ

⇒ σ′((q, C), a) ≥ σ(q, a)
1 + |C| γ

− θ and σ′((q, C), a) ≤ σ(q, a) + |C| γ

1 + |C| γ
+ |A(q)| · θ

⇒ σ′((q, C), a) ≥ σ(q, a)
1 + |C| γ

− |A(q)| · θ and σ′((q, C), a) ≤ σ(q, a) + |C| γ

1 + |C| γ
+ |A(q)| · θ.

Therefore, we have:

|σ(q, a) − σ′((q, C), a)| ≤ max {σ(q, a) − σ′((q, C), a), σ′((q, C), a) − σ(q, a)}

≤ max
{

σ(q, a)
(

|C| γ

1 + |C| γ

)
,

|C| γ

1 + |C| γ
(1 − σ(q, a))

}
+ |A(q)| · θ

≤ |C| γ + |A| θ.
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Hence, the expected cost in (3) can be bounded as follows:

Eρ∼σ′cost(ρ, σ, σ′) ≤ 1
2W · E(q,C)∼dσ′

∑
a∈A(q)

(|C| γ + |A| · θ)

≤ 1
2W ·

∑
a∈A

E(q,C)∼dσ′ [|C| γ + |A| · θ]

≤ 1
2W · |A|2 · θ + W |A| γ · E(q,C)∼dσ′ [|C|]

From the construction of the shielded policy σ′, we know that |C| increases only if the
current state q is a source state of some live edge in a live-group H ∈ Hℓ and none of
the live edges in H are sampled. From such a state (q, C) with high enough counter value
countH(C), the probability of sampling an action that is not in H can be expressed in terms
of σ(q, A(q) ∩ H) =

∑
a∈A(q)∩H σ(q, a) as follows:

Pr[(q, C) → C + 1] = 1 −
∑

a∈A(q)∩H

σ′((q, C), a)

≤ 1 − σ(q, A(q) ∩ H) + countH(C)
1 + countH(C) · γ

≤ 1 − σ(q, A(q) ∩ H)
1 + countH(C) · γ

≤ 1 − σ(q, A(q) ∩ H).

If σ(q, A(q) ∩ H) = 1, then Pr[(q, C) → C + 1] = 0. Hence, if Pr[(q, C) → C + 1] > 0, then
the probability Pr[(q, C) → C + 1] can be bounded by

m = max{1 − σ(q, A(q) ∩ H) | q ∈ Q, H ∈ Hℓ, A(q) ∩ H ̸= ∅, σ(q, A(q) ∩ H) < 1}.

Note that m > 0 as σ is a stochastic policy and m < 1 by the above construction. Hence,
the probability that the counter sum |C| increases can be bounded by m. Therefore, the
expected value of |C| can be bounded as follows:

E(q,C)∼dσ′ [|C|] ≤
∞∑

i=0
i · mi = m

(1 − m)2 ≤ 1
(1 − m)2 .

Therefore, the expected cost in (3) can be bounded as follows:

Eρ∼σ′cost(ρ, σ, σ′) ≤ 1
2W · |A|2 · θ + W |A| γ · 1

(1 − m)2 .

By fixing θ and γ appropriately, we can ensure that the above expression is less than ε. ◀

▶ Theorem 13. Given the premises of Cor. 9 with σ′ = σ|Γ⋆,θ
γ and W⋆

Φ = Q, for every ε > 0,
there exist parameters θ, γ > 0 such that the following holds: Discq0

σ′(λ) > Discq0
σ (λ) − ε.

Proof. Let us first compute a bound on the length of the runs that are significant to get an
ε-optimal reward. Let rmax be the maximum reward in the MDP M , and let Discq0

σ′(λ, k) be
the expected bounded discounted reward of policy σ′ for the first k steps:

Discq0
σ′(λ, k) =

∑
1≤i≤k

λiEq0
σ (r(Xi, Yi))
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Now, let’s choose B such that λB · rmax < (1 − λ) · ε/2. Note that such a B exists as λB → 0
when B → ∞. This gives us the following for any policy σ′:

Discq0
σ′(λ) = lim

N 7→∞

∑
0≤i≤N−1

λiEq0
σ (r(Xi, Yi))

= Discq0
σ′(λ, B) + lim

N 7→∞

∑
B+1≤i≤N

λiEq0
σ (r(Xi, Yi))

≤ Discq0
σ′(λ, B) + lim

N 7→∞

∑
B+1≤i≤N

λi · rmax

= Discq0
σ′(λ, B) + λB · rmax

1 − λ

< Discq0
σ′(λ, B) + ε

2

Now, let r(κ) =
∑

0≤i≤|κ|−1 λir(Xi, Yi) be the reward of a run κ. Then, we can rewrite
Discq0

σ′(λ, k) in terms of the expected reward of k-length runs as follows:

Discq0
σ′(λ, k) =

∑
κ∈FRunsM ;|κ|=k

Eq0
σ (Pr (κ)) · r(κ)

Hence, the difference between bounded discounted reward for optimal policy σ and shielded
policy σ′ is the following:

Discq0
σ (λ, B) − Discq0

σ′(λ, B) =
∑

κ∈FRunsM ;|κ|=B

(Eq0
σ (Pr (κ)) − Eq0

σ′(Pr (κ))) · r(κ)

=
∑

κ∈FRunsM ;|κ|=B

(Pr
σ′

(κ) − Pr
σ

(κ)) · r(κ)

≤ |Q|B · (Pr
σ′

(κ) − Pr
σ

(κ)) · r(κ).

As W⋆
Φ = Q, every history κ |= pref(Φ). Hence, using Thm. 10, for length B, there exists

parameters θ, γ > 0 such that we can bound the above term by ε/2. Using the property of
bound B, this gives us:

Discq0
σ (λ, B) − Discq0

σ′(λ, B) < ε/2
=⇒ Discq0

σ′(λ, B) + ε/2 > Discq0
σ (λ, B) > Discq0

σ (λ) − ε/2
=⇒ Discq0

σ′(λ, B) > Discq0
σ (λ) − ε.

As Discq0
σ′(λ) ≥ Discq0

σ′(λ, B), we have that Discq0
σ′(λ) > Discq0

σ (λ) − ε. ◀

▶ Theorem 15. Given the premises of Cor. 9 with σ′ = σ|Γ⋆,θ
γ , Büchi objective Φ, and SCC

W⋆
Φ = Q, for every ε > 0, there exist θ, γ > 0 such that Avgq0

σ′ > Avgq0
σ − ε holds.

Proof. First, note that Γ = (S, D, Hℓ) such that S = D = ∅ as W⋆
Φ = Q and Φ is a Büchi

objective [4]. By Claim 21, we know that each counter value is bounded by Kθ,γ . Now,
as in the proof of Thm. 11, w.l.o.g, let us assume that σ is a stationary policy in M and
hence, one can show that both σ′ and σ are stationary policies w.r.t. the extended MDP
M ′ = ⟨Q′, A, ∆′, q′

0⟩ obtained by taking product of the MDP with the tuples of bounded
counter values. Furthermore, as Q is an SCC, using an extension of the well-known policy
difference lemma [26] for average rewards (see [44, 58] for more details), the difference in
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average rewards of σ and σ′ can be expressed as5:

∆Avg = Avgq0
σ − Avgq0

σ′ = E(q,C)∼dσ′
a∼σ′

[
V σ((q, C)) − Bσ((q, C), a)

]
, (4)

where dσ′ is the stationary distribution of σ′ in M ′; Bσ and V σ are the action-bias and
state-bias functions of σ defined as:

Bσ((q, C), a) = Bσ(q, a) = Eρ∼σ

[ ∞∑
i=0

r(ρ[i]) − Avgq0
σ

∣∣∣ ρ[0] = (q, a)
]
,

V σ((q, C)) = V σ(q) = Eρ∼σ

[ ∞∑
i=0

r(ρ[i]) − Avgq0
σ

∣∣∣ ρ[0] ∈ q × A(q)
]
.

Then, (4) can be rewritten as:

∆Avg = E(q,C)∼dσ′

∑
a∈A(q)

σ′((q, C), a) ·
[
V σ((q, C)) − Bσ((q, C), a)

]
= E(q,C)∼dσ′

∑
a∈A(q)

σ′((q, C), a) ·
[ ∑

a′∈A(q)

σ(q, a′)Bσ(q, a′) − Bσ(q, a)
]

= E(q,C)∼dσ′

∑
a′∈A(q)

σ(q, a′)Bσ(q, a′) −
∑

a∈A(q)

σ′((q, C), a) · Bσ(q, a)

= E(q,C)∼dσ′

∑
a∈A(q)

(σ(q, a) − σ′((q, C), a)) · Bσ(q, a).

As it is knows that |Bσ| is bounded by some B for such policy σ [44], we have the following:

∆Avg ≤ B · E(q,C)∼dσ′

∑
a∈A(q)

|σ(q, a) − σ′((q, C), a)| .

As the above expression is similar to the expected cost in (3), using similar arguments as in
the proof of Thm. 11, using appropriate values for θ and γ, we can ensure that the above
expression is less than ε. ◀

▶ Theorem 19. Given the premises of Thm. 15 with σ′ = σ|Γ•,θ
γ and T being the set of even

color states in the objective Φ, for every frequency 0 < δ ≤ 1, there exists parameters θ, γ > 0
such that for every run ρ ∼ σ′, it holds that freq(ρ, T ) ≥ δ.

Proof. Since Φ is a Büchi objective, by the construction of ParityTemplate•, as in [4, Alg.
3], Γ• = (∅, ∅, Hℓ = {Hi | i ∈ [1; n]}) such that W•

Φ = Q can be partitioned into n groups
{Qi}n

i=0 with Q0 = T and Hi being the edges from Qi to Qi−1. Intuitively, the indices of
the groups measure the closeness to the even color states T and the live-groups are the edges
that are used to ensure that a run progresses from higher index groups to lower index groups
leading to the final group T . Furthermore, by Claim 21, we know that each counter value of
the live-groups is bounded by Kθ,γ . As visiting Qi ensures visiting the source states of the
live-group Hi, it must hold that within Kθ,γ many visits to the group Qi, the counter value
of the live-group Hi is reset to zero, i.e., an edge from Hi is sampled at least once. Hence,
applying the above argument recursively, we can show that within Kn+1

θ,γ many visits to the
group Qn will ensure visiting the group Qn at least Kn

θ,γ times, which in turn ensures that

5 We use x ∼ µ to denote that x is sampled from distribution µ.
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the group Qn−1 is visited at least Kn−1
θ,γ times and so on until the group Q0 = T is visited at

least once. Finally, as every cycle of length |Q| visits some group at least twice, for every
run ρ sampled from σ′, it holds that

freq(ρ, T ) ≥ 1
Kn−1

θ,γ

= min
(

1,

(
γ

1/θ − 1

)n−1
)

.

Hence, with appropriate values for θ and γ, we can ensure that the above expression is at
least δ. ◀

B Strategy Templates in ⋆-good SCCs

▶ Lemma 22. Let M be an MDP and Φ = Parity[c] be a parity objective such that
GM

⋆ = (Q, E) is the corresponding ⋆-game graph. If Q is a ⋆-good SCC, then the strategy
template Γ⋆ = ParityTemplate⋆(GM

⋆ , Φ) is such that Γ⋆ = (S, D, Hℓ) with S = D = ∅.

Proof. First, let us consider the case when ⋆ = •. Let Γ• = (S, D, Hℓ) be the strategy
template obtained by the procedure ParityTemplate•(GM

• , Φ). Note that as Q is a •-good
SCC, by results in [1], W•

Φ = Q. As the procedure ParityTemplate• marks all edges going
out of W•

Φ as unsafe, it follows that S = ∅. We only need to show that D = ∅.
Let Φ = Parity[c] be a parity objective with coloring function c : Q → [0; d]. Let

Pi = {q ∈ Q | c(q) = i} be the set of states with color i. Let us first show that the maximal
color d can only be even. Suppose d is odd, then there exists a state q with c(q) = d. As Q

is a •-good SCC, it holds that q ∈ W•
φ, where

φ = {ρ ∈ RunsM | ∃n ≥ 0 : c(ρ[n]) > d and is even}.

However, as d is the maximum color, there are no states with c(q) > d, and hence, φ = ∅.
So, W•

φ = ∅, which is a contradiction to the assumption that q ∈ W•
φ.

Now, let us show that D = ∅ using induction on d, i.e., the maximal color in c. For the
base case, if d = 0, then the statement holds trivially.

Suppose the statement holds for d = 2k for some k ≥ 0. Now, let us consider the case
when d = 2k + 2. Consider the procedure ParityTemplate given in [4, Algorithm 3] that
computes the strategy template Γ•. As d is even, the procedure ParityTemplate starts
by computing A = attr0(Pd) (in line 14) which is the set of states from which system player
can force the play to visit a state with color d. If A = Q, then the procedure terminates (in
line 15) and returns the output of a procedure ReachTemplate (provided in [4, Algorithm
1]), which only returns a live group template. Hence, D = ∅. Suppose A ≠ Q, then the
procedure ParityTemplate is called recursively on the subgame G′ obtained by removing
the states in A (in line 17). As A = attr0(Pd) ⊇ Pd, the maximal color in G′ is at most
d − 1. If there is a state q in G′ with color d − 1 (which is odd), then as Q is a •-good SCC,
it holds that q ∈ W•

φ′ , where

φ′ = {ρ ∈ RunsM | ∃n ≥ 0 : c(ρ[n]) > d − 1 and is even}.

Hence, system player can force the run from q to visit a state with color d, and hence,
q ∈ attr0(Pd) = A. This contradicts the assumption that q is a node in G′. Therefore, there
is no state in A with color d − 1, and hence, the maximal color in G′ is at most d − 2. By
induction hypothesis, the procedure ParityTemplate returns a template with D = ∅.

For the case when ⋆ = ◦, the procedure ParityTemplate uses Algorithm 8 provided
in [43]. This procedure first converts the 1 1

2 -player game graph GM
◦ to a 2-player game graph
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G′ and then uses the procedure ParityTemplate provided in [4, Algorithm 3] to compute
the strategy template. Using similar arguments as above, we can show that the procedure
ParityTemplate provided in [4, Algorithm 3] for the 2-player game graph G′ returns a
template with D = ∅. ◀
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(a) Unshielded (b) Low γ

(c) High γ (d) Online objective addition

Figure 5 Screenshots of UI showing MARG controlled robot for an instance from FactoryBot.
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