
Scalable Anytime Algorithms for
Learning Fragments of Linear Temporal Logic

Ritam Raha1,2, Rajarshi Roy3, Nathanaël Fijalkow2,4, and Daniel Neider3

1 University of Antwerp, Antwerp, Belgium
2 CNRS, LaBRI and Université de Bordeaux, France

3 Max Planck Institute for Software Systems, Kaiserslautern, Germany
4 The Alan Turing Institute of data science, United Kingdom

Abstract. Linear temporal logic (LTL) is a specification language for
finite sequences (called traces) widely used in program verification, mo-
tion planning in robotics, process mining, and many other areas. We con-
sider the problem of learning LTL formulas for classifying traces; despite
a growing interest of the research community existing solutions suffer
from two limitations: they do not scale beyond small formulas, and they
may exhaust computational resources without returning any result. We
introduce a new algorithm addressing both issues: our algorithm is able
to construct formulas an order of magnitude larger than previous meth-
ods, and it is anytime, meaning that it in most cases successfully outputs
a formula, albeit possibly not of minimal size. We evaluate the perfor-
mances of our algorithm using an open source implementation against
publicly available benchmarks.

1 Introduction

Linear Temporal Logic (LTL) is a prominent logic for specifying temporal prop-
erties [23] over infinite traces, and recently introduced over finite traces [7]. In
this paper, we consider finite traces but, in a small abuse of notations, call this
logic LTL as well. It has become a de facto standard in many fields such as model
checking, program analysis, and motion planning for robotics. Over the past five
to ten years learning temporal logics (of which LTL is the core) has become an
active research area and identified as an important goal in artificial intelligence:
it formalises the difficult task of building explainable models from data. Indeed,
as we will see in the examples below and as argued in the literature, e.g., by
[5] and [26], LTL formulas are typically easy to interpret by human users and
therefore useful as explanations. The variable free syntax of LTL and its natural
inductive semantics make LTL a natural target for building classifiers separating
positive from negative traces.

The fundamental problem we study here, established in [27], is to build an
explainable model in the form of an LTL formula from a set of positive and neg-
ative traces. More formally (we refer to the next section for formal definitions),
given a set u1, . . . , un of positive traces and a set v1, . . . , vn of negative traces,
the goal is to construct a formula ϕ of LTL which satisfies all ui’s and none of

ar
X

iv
:2

11
0.

06
72

6v
3

 [
cs

.A
I]

 1
 F

eb
 2

02
2

2 Raha et al.

the vi’s. In that case, we say that ϕ is a separating formula or—using machine
learning terminology—a classifier.

To make things concrete let us introduce our running example, a classic mo-
tion planning problem in robotics and inspired by [17]. A robot collects wastebin
contents in an office-like environment and empties them in a trash container. Let
us assume that there is an office o, a hallway h, a container c and a wet area
w. The following are possible traces obtained in experimentation with the robot
(for instance, through simulation):

u1 = h · h · h · h · o · h · c · h
v1 = h · h · h · h · h · c · h · o · h · h

In LTL learning we start from these labelled data: given u1 as positive and v1
as negative, what is a possible classifier including u1 but not v1? Informally, v1
being negative implies that the order is fixed: o must be visited before c. We
look for classifiers in the form of separating formulas, for instance

F(o ∧ FX c),

where the F-operator stands for “finally” and X for “next”. Note that this
formula requires to visit the office first and only then visit the container.

Assume now that two more negative traces were added:

v2 = h · h · h · h · h · o · w · c · h · h · h
v3 = h · h · h · h · h · w · o · w · c · w · w

Then the previous separating formula is no longer correct, and a possible sepa-
rating formula is

F(o ∧ FX c) ∧G(¬w),

which additionally requires the robot to never visit the wet area. Here the G-
operator stands for “globally”.

Let us emphasise at this point that for the sake of presentation, we con-
sider only exact classifiers: a separating formula must satisfy all positive traces
and none of the negative traces. However, our algorithm naturally extends to
the noisy data setting where the goal is to construct an approximate classifier,
replacing ‘all’ and ‘none’ by ‘almost all’ and ‘almost none’.

State of the art. A number of different approaches have been proposed, lever-
aging SAT solvers [22], automata [5], and Bayesian inference [19], and extended
to more expressive logics such as Property Specification Language (PSL) [26]
and Computational Tree Logic (CTL) [10].

Applications include program specification [20], anomaly and fault detec-
tion [4], robotics [6], and many more: we refer to [5], Section 7, for a list of
practical applications. An equivalent point of view on LTL learning is as a speci-
fication mining question. The ARSENAL [15] and FRET [16] projects construct
LTL specifications from natural language, we refer to [21] for an overview.

Scalable Algorithms for Learning LTL Formulas 3

Existing methods do not scale beyond formulas of small size, making them
hard to deploy for industrial cases. A second serious limitation is that they often
exhaust computational resources without returning any result. Indeed theoretical
studies [12] have shown that constructing the minimal LTL formula is NP-hard
already for very small fragments of LTL, explaining the difficulties found in
practice.

Our approach. To address both issues, we turn to approximation and any-
time algorithms. Here approximation means that the algorithm does not ensure
minimality of the constructed formula: it does ensure that the output formula
separates positive from negative traces, but it may not be the smallest one. On
the other hand, an algorithm solving an optimisation problem is called anytime
if it finds better and better solutions the longer it keeps running. In other words,
anytime algorithms work by refining solutions. As we will see in the experiments,
this implies that even if our algorithm timeouts it may yield some good albeit
non-optimal formula.

Our algorithm targets a strict fragment of LTL, which does not contain the
Until operator (nor its dual Release operator). It combines two ingredients:

– Searching for directed formulas: we define a space efficient dynamic program-
ming algorithm for enumerating formulas from a fragment of LTL that we
call Directed LTL.

– Combining directed formulas: we construct two algorithms for combining
formulas using Boolean operators. The first is an off-the-shelf decision tree
algorithm, and the second is a new greedy algorithm called Boolean subset
cover.

The two ingredients yield two subprocedures: the first one finds directed for-
mulas of increasing size, which are then fed to the second procedure in charge
of combining them into a separating formula. This yields an anytime algorithm
as both subprocedures can output separating formulas even with a low compu-
tational budget and refine them over time.

Let us illustrate the two subprocedures in our running example. The first
procedure enumerates so-called directed formulas in increasing size; we refer to
the corresponding section for a formal definition. The directed formulas F(o ∧
FX c) and G(¬w) have small size hence will be generated early on. The second
procedure constructs formulas as Boolean combinations of directed formulas.
Without getting into the details of the algorithms, let us note that both F(o ∧
FX c) and G(¬w) satisfy u1. The first does not satisfy v1 and the second does
not satisfy v2 and v3. Hence their conjunction F(o∧FX c)∧G(¬w) is separating,
meaning it satisfies u1 but none of v1, v2, v3.

Outline. The mandatory definitions and the problem statement we deal with
are described in Section 2. Section 3 shows a high-level overview of our main idea
in the algorithm. The next two sections, Section 4 and Section 5 describe the

4 Raha et al.

two phases of our algorithm in details, in one section each. We discuss the theo-
retical guarantees of our algorithm in Section 6. We conclude with an empirical
evaluation in Section 7.

2 Preliminaries

Traces. Let P be a finite set of atomic propositions. An alphabet is a finite
non-empty set Σ = 2P , whose elements are called symbols. A finite trace over Σ
is a finite sequence t = a1a2 . . . an such that for every 1 ≤ i ≤ n, ai ∈ Σ. We say
that t has length n and write |t| = n. For example, let P = {p, q}, in the trace
t = {p, q} · {p} · {q} both p and q hold at the first position, only p holds in the
second position, and q in the third position. Note that, throughout the paper,
we only consider finite traces.

A trace is a word if exactly one atomic proposition holds at each position:
we used words in the introduction example for simplicity, writing h · o · c instead
of {h} · {o} · {c}.

Given a trace t = a1a2 . . . an and 1 ≤ i ≤ j ≤ n, let t[i, j] = ai . . . aj be the
infix of t from position i up to and including position j. Moreover, t[i] = ai is
the symbol at the ith position.

Linear Temporal Logic. The syntax of Linear Temporal Logic (LTL, in short)
is defined by the following grammar

ϕ := p ∈ P | ¬p | ϕ ∨ ψ | ϕ ∧ ψ | Xϕ | Fϕ | Gϕ | ϕUψ

We use the standard formulas: true = p ∨ ¬p, false = p ∧ ¬p and last =
¬X true, which denotes the last position of the trace. As a shorthand, we use
Xn ϕ for X . . .X︸ ︷︷ ︸

n times

ϕ.

The size of a formula is the size of its underlying syntax tree.

Formulas in LTL are evaluated over finite traces. To define the semantics of
LTL we introduce the notation t, i |= ϕ, which reads ‘the LTL formula ϕ holds
over trace t from position i’. We say that t satisfies ϕ and we write t |= ϕ when
t, 1 |= ϕ. The definition of |= is inductive on the formula ϕ:

– t, i |= p ∈ P if p ∈ t[i].
– t, i |= Xϕ if i < |t| and t, i+ 1 |= ϕ. It is called the neXt operator.

– t, i |= Fϕ if t, i′ |= ϕ for some i′ ∈ [i, |t|]. It is called the eventually operator
(F comes from Finally).

– t, i |= Gϕ if t, i′ |= ϕ for all i′ ∈ [i, |t|]. It is called the Globally operator.

– t, i |= ϕUψ if t, j |= ψ for some i ≤ j ≤ |t| and t, i′ |= ϕ for all i ≤ i′ < j. It
is called the Until operator.

Scalable Algorithms for Learning LTL Formulas 5

The LTL Learning Problem. The LTL exact learning problem studied in this
paper is the following: given a set P of positive traces and a set N of negative
traces, construct a minimal LTL separating formula ϕ, meaning such that t |= ϕ
for all t ∈ P and t 6|= ϕ for all t ∈ N .

There are two relevant parameters for a sample: its size, which is the number
of traces, and its length, which is the maximum length of all traces.

The problem is naturally extended to the LTL noisy learning problem where
the goal is to construct an ε-separating formula, meaning such that ϕ satisfies
all but an ε proportion of the traces in P and none but an ε proportion of
the traces in N . For the sake of simplicity we present an algorithm for solving
the LTL exact learning problem, and later sketch how to extend it to the noisy
setting.

3 High-level view of the algorithm

Let us start with a naive algorithm for the LTL Learning Problem. We can search
through all LTL formulas in some order and check whether they are separating
for our sample or not. Checking whether an LTL formula is separating can be
done using standard methods (for e.g. using bit vector operations [2]). However,
the major drawback of this idea is that we have to search through all LTL
formulas, which is hard as the number of LTL formulas grows very quickly5.

To tackle this issue, instead of the entire LTL fragment, our algorithm (as
outlined in Algorithm 1) performs an iterative search through a fragment of LTL,
which we call Directed LTL (Line 4). We expand upon this in Section 4. In that
section, we also describe how we can iteratively generate these Directed LTL
formulas in a particular “size order” (not the usual size of an LTL formula) and
evaluate these formulas over the traces in the sample efficiently using dynamic
programming techniques.

To include more formulas in our search space, we generate and search through
Boolean combinations of the most promising formulas of Directed LTL formulas
(Line 11), which we describe in detail in Section 5. Note that, the fragment of
LTL that our algorithm searches through ultimately does not include formulas
with U operator. Thus, for readability, we use LTL to refer to the fragment
LTL \U in the rest of the paper.

During the search of formulas, our algorithm searches for smaller separating
formulas at each iteration than the previously found ones, if any. In fact, as a
heuristic, once a separating formula is found, we only search through formulas
that are smaller than the found separating formula. Such a heuristic, along with
aiding the search for minimal formulas, also reduces the search space signifi-
cantly.

Anytime property. The anytime property of our algorithm is also consequence
of storing the smallest formula seen so far ((Line 7 and 14)). Once we find a sep-

5 The number of LTL formulas of size k is asymptotically equivalent to
√
14·7k

2
√
πk3

[13]

6 Raha et al.

Algorithm 1 Overview of our algorithm

1: B ← ∅
2: ψ ← ∅: best formula found
3: for all s in “size order” do
4: D ← all Directed LTL formulas of parameter s
5: for all ϕ ∈ D do
6: if ϕ is separating and smaller than ψ then
7: ψ ← ϕ
8: end if
9: end for

10: B ← B ∪D
11: B ← Boolean combinations of the promising formulas in B
12: for all ϕ ∈ B do
13: if ϕ is separating and smaller than ψ then
14: ψ ← ϕ
15: end if
16: end for
17: end for
18: Return ψ

arating formula, we can output it and continue the search for smaller separating
formulas.

Extension to the noisy setting. The algorithm is seamlessly extended to the
noisy setting by rewriting lines 6 and 13: instead of outputting only separating
formulas, we output ε-separating formulas.

4 Searching for directed formulas

The first insight of our approach is the definition of a fragment of LTL that we
call directed LTL.

A partial symbol is a conjunction of positive or negative atomic propositions.
We write s = p0 ∧ p2 ∧ ¬p1 for the partial symbol specifying that p0 and p2
hold and p1 does not. The definition of a symbol satisfying a partial symbol is
natural: for instance the symbol {p0, p2, p4} satisfies s. The width of a partial
symbol is the number of atomic propositions it uses.

Directed LTL is defined by the following grammar:

ϕ = Xn s | FXn s | Xn(s ∧ ϕ) | FXn(s ∧ ϕ),

where s is a partial symbol and n ∈ {0, 1, · · · }. As an example, the directed
formula

F((p ∧ q) ∧ FX2 ¬p)

reads: there exists a position satisfying p ∧ q, and at least two positions later,
there exists a position satisfying ¬p. The intuition behind the term “directed”

Scalable Algorithms for Learning LTL Formulas 7

is that a directed formula fixes the order in which the partial symbols occur.
A non-directed formula is F p ∧ F q: there is no order between p and q. Note
that Directed LTL only uses the X and F operators as well as conjunctions and
atomic propositions.

Generating directed formulas. Let us consider the following problem: given
the sample S = P ∪N , we want to generate all directed formulas together with
a list of traces in S, they satisfy. Our first technical contribution and key to
the scalability of our approach is an efficient solution to this problem based on
dynamic programming.

Let us define a natural order in which we want to generate directed formulas.
They have two parameters: length, which is the number of partial symbols in the
directed formula, and width, which is the maximum of the widths of the partial
symbols in the directed formula. We consider the order based on summing these
two parameters:

(1, 1), (2, 1), (1, 2), (3, 1), (2, 2), (1, 3), . . .

(We note that in practice, slightly more complicated orders on pairs are useful
since we want to increase the length more often than the width.) Our enumer-
ation algorithm works by generating all directed formulas of a given pair of
parameters in a recursive fashion. Assuming that we already generated all di-
rected formulas for the pair of parameters (`, w), we define two procedures, one
for generating the directed formulas for the parameters (`+ 1, w), and the other
one for (`, w + 1).

When we generate the directed formulas, we also keep track of which traces
in the sample they satisfy by exploiting a dynamic programming table called
LastPos. We define it is as follows, where ϕ is a directed formula and t a trace
in S:

LastPos(ϕ, t) = {i ∈ [1, |t|] : t[1, i] |= ϕ} .

The main benefit of LastPos is that it meshes well with directed formulas: it
is algorithmically easy to compute them recursively on the structure of directed
formulas.

A useful idea is to change the representation of the set of traces S, by pre-
computing the lookup table Index defined as follows, where t is a trace in S, s
a partial symbol, and i in [1, |t|]:

Index(t, s, i) = {j ∈ [i+ 1, |t|] : t[j] |= s} .

The table Index can be precomputed in linear time from S, and makes the
dynamic programming algorithm easier to formulate.

Having defined the important ingredients, we now present the pseudocode 2
for both increasing the length and width of a formula. For the length increase
algorithm, we define two extension operators ∧=k and ∧≥k that “extend” the
length of a directed formula ϕ by including a partial symbol s in the formula.
Precisely, the operator s ∧=k ϕ replaces the rightmost partial symbol s′ in ϕ

8 Raha et al.

with (s′ ∧ Xk s), while s ∧≥k ϕ replaces s′ with (s′ ∧ FXk s). For instance,
c ∧=2 X(a ∧ X b) = X(a ∧ X(b ∧ X2 c)). For the width increase algorithm, we
say that two directed formulas are compatible if they are equal except for partial
symbols. For two compatible formulas, we define a pointwise-and (∧·) operator
that takes the conjunction of the corresponding partial symbols at the same
positions. For instance, X(a ∧X b) ∧· X(b ∧X c) = X((a ∧ b) ∧X(b ∧ c)). The
actual implementation of the algorithm refines the algorithms in certain places.
For instance:

– Line 3: instead of considering all partial symbols, we restrict to those ap-
pearing in at least one positive trace.

– Line 13: some computations for ϕ≥j can be made redundant; a finer data
structure factorises the computations.

– Line 25: using a refined data structure, we only enumerate compatible di-
rected formulas.

Lemma 1. Algorithm 2 generates all directed formulas and correctly computes
the tables LastPos.

The dual point of view. We use the same algorithm to produce formulas in
a dual fragment to directed LTL, which uses the X and G operators, the last
predicate, as well as disjunctions and atomic propositions. The only difference is
that we swap positive and negative traces in the sample. We obtain a directed
formula from such a sample and apply its negation as shown below:

¬Xϕ = last∨X¬ϕ ; ¬Fϕ = G¬ϕ ; ¬(ϕ1∧ϕ2) = ¬ϕ1∨¬ϕ2.

5 Boolean combinations of formulas

As explained in the previous section, we can efficiently generate directed formulas
and dual directed formulas. Now we explain how to form a Boolean combination
of these formulas in order to construct separating formulas, as illustrated in the
introduction.

Boolean combination of formulas. Let us consider the following subproblem:
given a set of formulas, does there exist a Boolean combination of some of the
formulas that is a separating formula? We call this problem the Boolean subset
cover, which is illustrated in Figure 1. In this example we have three formulas
ϕ1, ϕ2, and ϕ3, each satisfying subsets of u1, u2, u3, v1, v2, v3 as represented in the
drawing. Inspecting the three subsets reveals that (ϕ1 ∧ϕ2)∨ϕ3 is a separating
formula.

The Boolean subset cover problem is a generalization of the well known and
extensively studied subset cover problem, where we are given S1, . . . , Sm subsets
of [1, n], and the goal is to find a subset I of [1,m] such that

⋃
i∈I Si covers

Scalable Algorithms for Learning LTL Formulas 9

Algorithm 2 Generation of directed formulas for the set of traces S

1: procedure Search directed formulas – length increase(`, w)
2: for all directed formulas ϕ of length ` and width w do
3: for all partial symbols s of width at most w do
4: for all t ∈ S do
5: I = LastPos(ϕ, t)
6: for all i ∈ I do
7: J = Index(t, s, i)
8: for all j ∈ J do
9: ϕ=j ← s ∧=(j−i) ϕ

10: add j to LastPos(ϕ=j , t)
11: end for
12: for all j′ ≤ max(J) do
13: ϕ≥j′ ← s ∧≥(j−i) ϕ
14: add J ∩ [j′, |t|] to LastPos(ϕ≥j′ , t)
15: end for
16: end for
17: end for
18: end for
19: end for
20: end procedure
21:
22: procedure Search directed formulas – width increase(`, w)
23: for all directed formulas ϕ of length ` and width w do
24: for all directed formulas ϕ′ of length ` and width 1 do
25: if ϕ and ϕ′ are compatible then
26: ϕ′′ ← ϕ ∧· ϕ′
27: for all t ∈ S do
28: LastPos(ϕ′′, t)← LastPos(ϕ, t) ∩ LastPos(ϕ′, t)
29: end for
30: end if
31: end for
32: end for
33: end procedure

all of [1, n] – such a set I is called a cover. Indeed, it corresponds to the case
where all formulas satisfy none of the negative traces: in that case, conjunc-
tions are not useful, and we can ignore the negative traces. The subset cover
problem is known to be NP-complete. However, there exists a polynomial-time
log(n)-approximation algorithm called the greedy algorithm: it is guaranteed to
construct a cover that is at most log(n) times larger than the minimum cover.
This approximation ratio is optimal in the following sense [8]: there is no poly-
nomial time (1 − o(1)) log(n)-approximation algorithm for subset cover unless
P = NP. Informally, the greedy algorithm for the subset cover problem does
the following: it iteratively constructs a cover I by sequentially adding the most
‘promising subset’ to I, which is the subset Si maximising how many more ele-
ments of [1, n] are covered by adding i to I.

10 Raha et al.

Fig. 1: The Boolean subset cover problem: the formulas ϕ1, ϕ2, and ϕ3 satisfy
the words encircled in the corresponding area; in this instance (ϕ1 ∧ ϕ2) ∨ ϕ3 is
a separating formula.

We introduce an extension of the greedy algorithm to the Boolean subset
cover problem. The first ingredient is a scoring function, which takes into account
both how close the formula is to being separating, and how large it is. We use
the following score:

Score(ϕ) =
Card({t ∈ P : t |= ϕ}) + Card({t ∈ N : t 6|= ϕ})√

|ϕ|+ 1
,

where |ϕ| is the size of ϕ. The use of
√
· is empirical, it is used to mitigate the

importance of size over being separating.
The algorithm maintains a set of formulas B, which is initially the set of

formulas given as input, and add new formulas to B until finding a separating
formula. Let us fix a constant K, which in the implementation is set to 5. At
each point in time, the algorithm chooses the K formulas ϕ1, . . . , ϕK with the
highest score in B and constructs all disjunctions and conjunctions of ϕi with
formulas in B. For each i, we keep the disjunction or conjunction with a maximal
score, and add this formula to B if it has higher score than ϕi. We repeat this
procedure until we find a separating formula or no formula is added to B.

Another natural approach to the Boolean subset cover problem is to use deci-
sion trees: we use one variable for each trace and one atomic proposition for each
formula to denote whether the trace satisfies the formula. We then construct a
decision tree classifying all traces. We experimented with both approaches and
found that the greedy algorithm is both faster and yields smaller formulas. We do
not report on these experiments because the formulas output using the decision
tree approach are prohibitively larger and therefore not useful for explanations.
Let us, however, remark that using decision trees we get a theoretical guaran-
tee that if there exists a separating formula as a Boolean combination of the
formulas, then the algorithm will find it.

6 Theoretical guarantees

The following result shows the relevance of our approach using directed LTL and
Boolean combinations.

Scalable Algorithms for Learning LTL Formulas 11

Theorem 1. Every formula of LTL(F,X,∧,∨) is equivalent to a Boolean com-
bination of directed formulas. Equivalently, every formula of LTL(G,X,∧,∨) is
equivalent to a Boolean combination of dual directed formulas.

The proof of Theorem 1 can be found in the appendix. To get an intuition,
let us consider the formula F p ∧ F q, which is not directed, but equivalent to
F(p∧F q)∨F(q∧F p). In the second formulation, there is a disjunction over the
possible orderings of p and q. The formal proof generalises this rewriting idea.

This implies the following properties for our algorithm:

– terminating : given a bound on the size of formulas, the algorithm eventually
generates all formulas of bounded size,

– correctness: if the algorithm outputs a formula, then it is separating,
– completeness: if there exists a separating formula in LTL(F,G,X,∧,∨) with

no nesting of F and G, then the algorithm finds a separating formula.

7 Experimental evaluation

In this section, we answer the following research questions to assess the perfor-
mance of our LTL learning algorithm.

RQ1: How effective are we in learning concise LTL formulas from samples?
RQ2: How much scalability do we achieve through our algorithm?
RQ3: What do we gain from the anytime property of our algorithm?

Experimental Setup. To answer the questions above, we have implemented
a prototype of our algorithm in Python 3 in a tool named SCARLET6 (SCalable
Anytime algoRithm for LEarning lTl). We run SCARLET on several benchmarks
generated synthetically from LTL formulas used in practice. To answer each
research question precisely, we choose different sets of LTL formulas. We discuss
them in detail in the corresponding sections. Note that, however, we did not
consider any formulas with U-operator, since SCARLET is not designed to find
such formulas.

To assess the performance of SCARLET, we compare it against two state-of-
the-art tools for learning logic formulas from examples:

1. FLIE7, developed by [22], infers minimal LTL formulas using a learning al-
gorithm that is based on constraint solving (SAT solving).

2. SYSLITE8, developed by [1], originally infers minimal past-time LTL formulas
using an enumerative algorithm implemented in a tool called CVC4SY [25].
For our comparisons, we use a version of SYSLITE that we modified (which
we refer to as SYSLITEL) to infer LTL formulas rather than past-time LTL
formulas. Our modifications include changes to the syntactic constraints gen-
erated by SYSLITEL as well as changing the semantics from past-time LTL
to ordinary LTL.

6 https://github.com/rajarshi008/Scarlet
7 https://github.com/ivan-gavran/samples2LTL
8 https://github.com/CLC-UIowa/SySLite

https://github.com/rajarshi008/Scarlet
https://github.com/ivan-gavran/samples2LTL
https://github.com/CLC-UIowa/SySLite

12 Raha et al.

To obtain a fair comparison against SCARLET, in both the tools, we disabled the
U-operator. This is because if we allow U-operator this will only make the tools
slower since they will have to search through all formulas containing U.

All the experiments are conducted on a single core of a Debian machine
with Intel Xeon E7-8857 CPU (at 3 GHz) using up to 6 GB of RAM. We set
the timeout to be 900 s for all experiments. We include scripts to reproduce all
experimental results in a publicly available artifact [24].

Table 1: Common LTL formulas used in practice

Absence: G(¬p), G(q→G(¬p))

Existence: F(p), G(¬p) ∨ F(p ∧ F(q))

Universality: G(p), G(q→G(p))

Disjunction of
patterns:

G(¬p) ∨ F(p ∧ F(q)
∨G(¬s) ∨ F(r ∧ F(s)),

F(r) ∨ F(p) ∨ F(q)

Sample generation. To provide a comparison among the learning tools, we
follow the literature [22,26] and use synthetic benchmarks generated from real-
world LTL formulas. For benchmark generation, earlier works rely on a fairly
naive generation method. In this method, starting from a formula ϕ, a sample
is generated by randomly drawing traces and categorizing them into positive
and negative examples depending on the satisfaction with respect to ϕ. This
method, however, often results in samples that can be separated by formulas
much smaller than ϕ. Moreover, it often requires a prohibitively large amount of
time to generate samples (for instance, for G p, where almost all traces satisfy a
formula) and, hence, often does not terminate in a reasonable time.

To alleviate the issues in the existing method, we have designed a novel
generation method for the quick generation of large samples. In our method,
we first convert the starting formula into an equivalent DFA and then extract
accepted and rejected words to obtain a sample of the desired size. We provide
more details on this new generation method used in the appendix.

7.1 RQ1: Performance Comparison

To address our first research question, we have compared all three tools on a
synthetic benchmark suite generated from eight LTL formulas. These formulas
originate from a study by Dwyer et al. [9], who have collected a comprehensive
set of LTL formulas arising in real-world applications (see Table 1 for an excerpt).
The selected LTL formulas have, in fact, also been used by FLIE for generating
its benchmarks. While FLIE also considered formulas with U-operator, we did
not consider them for generating our benchmarks due to reasons mentioned in
the experimental setup.

Scalable Algorithms for Learning LTL Formulas 13

10−1100 101 102

10−1

100

101

102

TO

TO

FLIE time

S
C
A
R
L
E
T

ti
m

e

10−1100 101 102 TO

SYSLITEL time

(a) Runtime comparison

0 171 256

FLIE

SYSLITEL

SCARLET

No. of samples

Successful Timed out

(b) Timeouts

2 4 6 8

2

4

6

8

FLIE size

S
C
A
R
L
E
T

si
ze

2 4 6 8

SYSLITEL size

(c) Size comparison

Fig. 2: Comparison of SCARLET, FLIE and SYSLITEL on synthetic benchmarks.
In Figure 2a, all times are in seconds and ‘TO’ indicates timeouts. The size of
bubbles in the figure indicate the number of samples for each datapoint.

Our benchmark suite consists of a total of 256 samples (32 for each of the
eight LTL formulas) generated using our generation method. The number of
traces in the samples ranges from 50 to 2 000, while the length of traces ranges
from 8 to 15.

Figure 2a presents the runtime comparison of FLIE, SYSLITEL and SCARLET

on all 256 samples. From the scatter plots, we observe that SCARLET ran faster
than FLIE on all samples. Likewise, SCARLET was faster than SYSLITEL on all
but eight (out of 256) samples. SCARLET timed out on only 13 samples, while
FLIE and SYSLITEL timed out on 85 and 36, respectively (see Figure 2b).

The good performance of SCARLET can be attributed to its efficient formula
search technique. In particular, SCARLET only considers formulas that have a high
potential of being a separating formula since it extracts Directed LTL formulas
from the sample itself. FLIE and SYSLITEL, on the other hand, search through
arbitrary formulas (in order of increasing size), each time checking if the current
one separates the sample.

Figure 2c presents the comparison of the size of the formulas inferred by
each tool. On 170 out of the 256 samples, all tools terminated and returned an
LTL formula with size at most 7. In 150 out of this 170 samples, SCARLET, FLIE,
and SYSLITEL inferred formulas of equal size, while on the remaining 20 samples
SCARLET inferred formulas that were larger. The latter observation indicates that

14 Raha et al.

SCARLET misses certain small, separating formulas, in particular, the ones which
are not a Boolean combination of directed formulas.

However, it is important to highlight that the formulas learned by SCARLET

are in most cases not significantly larger than those learned by FLIE and SYSLITEL.
This can be seen from the fact that the average size of formulas inferred by
SCARLET (on benchmarks in which none of the tools timed out) is 3.21, while the
average size of formulas inferred by FLIE and SYSLITEL is 3.07.

Overall, SCARLET displayed significant speed-up over both FLIE and SYSLITEL
while learning a formula similar in size, answering question RQ1 in the positive.

7.2 RQ2: Scalability

To address the second research question, we investigate the scalability of SCARLET
in two dimensions: the size of the sample and the size of the formula from which
the samples are generated.

Scalability with respect to the size of the samples. For demonstrating
the scalability with respect to the size of the samples, we consider two formulas
ϕcov = F(a1) ∧ F(a2) ∧ F(a3) and ϕseq = F(a1 ∧ F(a2 ∧ F a3)), both of which
appear commonly in robotic motion planning [11]. While the formula ϕcov de-
scribes the property that a robot eventually visits (or covers) three regions a1,
a2, and a3 in arbitrary order, the formula ϕseq describes that the robot has to
visit the regions in the specific order a1a2a3.

We have generated two sets of benchmarks for both formulas for which we
varied the number of traces and their length, respectively. More precisely, the
first benchmark set contains 90 samples of an increasing number of traces (5
samples for each number), ranging from 200 to 100 000, each consisting of traces
of fixed length 10. On the other hand, the second benchmark set contains 90
samples of 200 traces, containing traces from length 10 to length 50. As the
results on both benchmark sets are similar, we here discuss the results on the
first set and refer the readers to the appendix for the second set.

Figure 3a shows the average runtime results of SCARLET, FLIE, and SYSLITEL
on the first benchmark set. We observe that SCARLET substantially outperformed
the other two tools on all samples. This is because both ϕcov and ϕseq are of
size eight and inferring formulas of such size is computationally challenging for
FLIE and SYSLITEL. In particular, FLIE and SYSLITEL need to search through
all formulas of size upto eight to infer the formulas, while, SCARLET, due to its
efficient search order (using length and width of a formula), infers them faster.

From Figure 3a, we further observe a significant difference between the run
times of SCARLET on samples generated from formula ϕcov and from formula ϕseq .
This is evident from the fact that SCARLET failed to infer formulas for samples
of ϕseq starting at a size of 6 000, while it could infer formulas for samples of
ϕcov up to a size of 50 000. Such a result is again due to the search order used
by SCARLET: while ϕcov is a Boolean combination of directed formulas of length
1 and width 1, ϕseq is a directed formula of length 3 and width 1.

Scalable Algorithms for Learning LTL Formulas 15

102 103 104 105

100

101

102

TO

Num of traces

A
v
er

a
g
e

T
im

e

Formula ϕcov

SCARLET SYSLITEL FLIE

102 103 104

101

102

TO

Num of traces

Formula ϕseq

(a) Scalability in sample size

2 3 4 5

10−1

100

101

102

TO

Formula size param (n)

A
v
er

a
g
e

T
im

e

Formula family ϕncov

2 3 4 5

10−1

100

101

102

TO

Formula size param (n)

Formula family ϕnseq

(b) Scalability in formula size

Fig. 3: Comparison of SCARLET, FLIE and SYSLITEL on synthetic benchmarks.
In Figure 3a, all times are in seconds and ‘TO’ indicates timeouts.

Scalability with respect to the size of the formula. To demonstrate the
scalability with respect to the size of the formula used to generate samples, we
have extended ϕcov and ϕseq to families of formulas (ϕn

cov)n∈N\{0} with ϕn
cov =

F(a1)∧F(a2)∧ . . .∧F(an) and (ϕn
seq)n∈N\{0} with ϕn

seq = F(a1 ∧F(a2 ∧F(. . .∧
F an))), respectively. These family of formulas describe properties similar to that
of ϕcov and ϕseq , but the number of regions is parameterized by n ∈ N\{0}. We
consider formulas from the two families by varying n from 2 to 5 to generate a
benchmark suite consisting of samples (5 samples for each formula) having 200
traces of length 10.

Figure 3b shows the average run time comparison of the tools for samples
from increasing formula sizes. We observe a trend similar to Figure 3a: SCARLET
performs better than the other two tools and infers formulas of family ϕn

cov

faster than that of ϕn
seq . However, contrary to the near linear increase of the

runtime with the number of traces, we notice an almost exponential increase of
the runtime with the formula size.

Overall, our experiments show better scalability with respect to sample and
formula size compared against the other tools, answering RQ2 in the positive.

16 Raha et al.

7.3 RQ3: Anytime Property

To answer RQ3, we list two advantages of the anytime property of our algorithm.
We demonstrate these advantages by showing evidence from the runs of SCARLET
on benchmarks used in RQ1 and RQ2.

First, in the instance of a time out, our algorithm may find a “concise”
separating formula while the other tools will not. In our experiments, we observed
that for all benchmarks used in RQ1 and RQ2, SCARLET obtained a formula even
when it timed out. In fact, in the samples from ϕ5

cov used in RQ2, SCARLET (see
Figure 3b) obtained the exact original formula, that too within one second (0.7
seconds in average), although timed out later. The time out was because SCARLET
continued to search for smaller formulas even after finding the original formula.

Second, our algorithm can actually output the final formula earlier than its
termination. This is evident from the fact that, for the 243 samples in RQ1 where
SCARLET does not time out, the average time required to find the final formula
is 10.8 seconds, while the average termination time is 25.17 seconds. Thus, there
is a chance that even if one stops the algorithm earlier than its termination, one
can still obtain the final formula.

Our observations from the experiments clearly indicate the advantages of
anytime property to obtain a concise separating formula and thus, answering
RQ3 in the positive.

8 Conclusion

We have proposed a new approach for learning temporal properties from exam-
ples, fleshing it out in an approximation anytime algorithm. We have shown in
experiments that our algorithm outperforms existing tools in two ways: it scales
to larger formulas and input samples, and even when it timeouts it often outputs
a separating formula.

Our algorithm targets a strict fragment of LTL, restricting its expressivity
in two aspects: it does not include the U (“until”) operator, and we cannot nest
the eventually and globally operators. We leave for future work to extend our
algorithm to full LTL.

An important open question concerns the theoretical guarantees offered by
the greedy algorithm for the Boolean subset cover problem. It extends a well
known algorithm for the classic subset cover problem and this restriction has
been proved to yield an optimal log(n)-approximation. Do we have similar guar-
antees in our more general setting?

References

1. Arif, M.F., Larraz, D., Echeverria, M., Reynolds, A., Chowdhury, O., Tinelli, C.:
SYSLITE: syntax-guided synthesis of PLTL formulas from finite traces. In: Formal
Methods in Computer Aided Design, FMCAD (2020)

2. Baresi, L., Kallehbasti, M.M.P., Rossi, M.: Efficient scalable verification of LTL
specifications. In: ICSE (1). pp. 711–721. IEEE Computer Society (2015)

Scalable Algorithms for Learning LTL Formulas 17

3. Bernardi, O., Giménez, O.: A linear algorithm for the random sampling from reg-
ular languages. Algorithmica 62, 130–145 (2010)

4. Bombara, G., Vasile, C.I., Penedo Alvarez, F., Yasuoka, H., Belta, C.:
A Decision Tree Approach to Data Classification using Signal Tempo-
ral Logic. In: Hybrid Systems: Computation and Control, HSCC (2016).
https://doi.org/10.1145/2883817.2883843

5. Camacho, A., McIlraith, S.A.: Learning interpretable models expressed in linear
temporal logic. International Conference on Automated Planning and Scheduling,
ICAPS (2019), https://ojs.aaai.org/index.php/ICAPS/article/view/3529

6. Chou, G., Ozay, N., Berenson, D.: Explaining multi-stage tasks by learning tem-
poral logic formulas from suboptimal demonstrations. In: Robotics: Science and
Systems (2020). https://doi.org/10.15607/RSS.2020.XVI.097

7. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: International Joint Conference on Artificial Intelligence, IJCAI
(2013). https://doi.org/10.5555/2540128.2540252

8. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In:
Symposium on Theory of Computing, STOC. pp. 624–633 (2014).
https://doi.org/10.1145/2591796.2591884

9. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications
for finite-state verification. In: International Conference on Software Engineering,
ICSE (1999). https://doi.org/10.1145/302405.302672

10. Ehlers, R., Gavran, I., Neider, D.: Learning properties in LTL ∩ ACTL from posi-
tive examples only. In: Formal Methods in Computer Aided Design, FMCAD. pp.
104–112 (2020). https://doi.org/10.34727/2020/isbn.978-3-85448-042-6 17

11. Fainekos, G.E., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion planning for
mobile robots. In: International Conference on Robotics and Automation, ICRA
(2005). https://doi.org/10.1109/ROBOT.2005.1570410

12. Fijalkow, N., Lagarde, G.: The complexity of learning linear temporal formu-
las from examples. In: International Conference on Grammatical Inference, ICGI
(2021), https://proceedings.mlr.press/v153/fijalkow21a.html

13. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press
(2009)

14. Gaglione, J., Neider, D., Roy, R., Topcu, U., Xu, Z.: Learning linear temporal
properties from noisy data: A maxsat approach. CoRR abs/2104.15083 (2021)

15. Ghosh, S., Elenius, D., Li, W., Lincoln, P., Shankar, N., Steiner, W.: ARSENAL:
automatic requirements specification extraction from natural language. In: NASA
Formal Methods, NFM (2016). https://doi.org/10.1007/978-3-319-40648-0 4

16. Giannakopoulou, D., Pressburger, T., Mavridou, A., Rhein, J., Schumann, J., Shi,
N.: Formal requirements elicitation with FRET. In: International Conference on
Requirements Engineering: Foundation for Software Quality, REFSQ (2020), http:
//ceur-ws.org/Vol-2584/PT-paper4.pdf

17. Grover, K., Barbosa, F.S., Tumova, J., Kret́ınský, J.: Semantic abstraction-guided
motion planning for scltl missions in unknown environments. In: Robotics: Science
and Systems XVII (2021). https://doi.org/10.15607/RSS.2021.XVII.090

18. Henriksen, J., Jensen, J., Jørgensen, M., Klarlund, N., Paige, B., Rauhe, T.,
Sandholm, A.: Mona: Monadic second-order logic in practice. In: Tools and Al-
gorithms for the Construction and Analysis of Systems, First International Work-
shop, TACAS ’95, LNCS 1019 (1995)

19. Kim, J., Muise, C., Shah, A., Agarwal, S., Shah, J.: Bayesian infer-
ence of linear temporal logic specifications for contrastive explanations.

https://doi.org/10.1145/2883817.2883843
https://ojs.aaai.org/index.php/ICAPS/article/view/3529
https://doi.org/10.15607/RSS.2020.XVI.097
https://doi.org/10.5555/2540128.2540252
https://doi.org/10.1145/2591796.2591884
https://doi.org/10.1145/302405.302672
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_17
https://doi.org/10.1109/ROBOT.2005.1570410
https://proceedings.mlr.press/v153/fijalkow21a.html
https://doi.org/10.1007/978-3-319-40648-0_4
http://ceur-ws.org/Vol-2584/PT-paper4.pdf
http://ceur-ws.org/Vol-2584/PT-paper4.pdf
https://doi.org/10.15607/RSS.2021.XVII.090

18 Raha et al.

In: International Joint Conference on Artificial Intelligence, IJCAI (2019).
https://doi.org/10.24963/ijcai.2019/776

20. Lemieux, C., Park, D., Beschastnikh, I.: General LTL specification mining.
In: International Conference on Automated Software Engineering, ASE (2015).
https://doi.org/10.1109/ASE.2015.71

21. Li, W.: Specification Mining: New Formalisms, Algorithms and Applications. Ph.D.
thesis, University of California, Berkeley, USA (2013), http://www.escholarship.
org/uc/item/4027r49r

22. Neider, D., Gavran, I.: Learning linear temporal properties. In:
Formal Methods in Computer Aided Design, FMCAD (2018).
https://doi.org/10.23919/FMCAD.2018.8603016

23. Pnueli, A.: The temporal logic of programs. In: Symposium on Foundations of
Computer Science, SFCS (1977). https://doi.org/10.1109/SFCS.1977.32

24. Raha, R., Roy, R., Fijalkow, N., Neider, D.: SCARLET: Scalable Anytime Al-
gorithm for Learning LTL (Jan 2022). https://doi.org/10.5281/zenodo.5890149,
https://doi.org/10.5281/zenodo.5890149

25. Reynolds, A., Barbosa, H., Nötzli, A., Barrett, C.W., Tinelli, C.: cvc4sy: Smart
and fast term enumeration for syntax-guided synthesis. In: Computer-Aided Veri-
fication, CAV (2019). https://doi.org/10.1007/978-3-030-25543-5 5

26. Roy, R., Fisman, D., Neider, D.: Learning interpretable models in the property
specification language. In: International Joint Conference on Artificial Intelligence,
IJCAI. pp. 2213–2219 (2020). https://doi.org/10.24963/ijcai.2020/306

27. Rozier, K.Y.: Specification: The biggest bottleneck in formal methods and au-
tonomy. In: Verified Software. Theories, Tools, and Experiments, VSTTE (2016).
https://doi.org/10.1007/978-3-319-48869-1 2

https://doi.org/10.24963/ijcai.2019/776
https://doi.org/10.1109/ASE.2015.71
http://www.escholarship.org/uc/item/4027r49r
http://www.escholarship.org/uc/item/4027r49r
https://doi.org/10.23919/FMCAD.2018.8603016
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.5281/zenodo.5890149
https://doi.org/10.5281/zenodo.5890149
https://doi.org/10.1007/978-3-030-25543-5_5
https://doi.org/10.24963/ijcai.2020/306
https://doi.org/10.1007/978-3-319-48869-1_2

Scalable Algorithms for Learning LTL Formulas 19

A Proof of Theorem 1

For readability, in this section, we refer to Directed LTL as dLTL and the Boolean
combination of Directed LTL as dLTL(∧,∨).

In this section, we prove the first statement of Theorem 1 which can be
re-stated as theorem stated below. The remaining part of Theorem 1 is a conse-
quence of the proof of the following theorem.

Theorem 2. Let ϕ be a formula in LTL(F,X,∧,∨). Then ϕ is a formula in
dLTL(∧,∨).

We first prove a lemma necessary for the proof of the above theorem.

Lemma 2. Let ∆1, ∆2 be two dLTL formulas. Then, ∆1 ∧ ∆2 can be written
as a disjunction of formulas in dLTL.

Proof. To prove the lemma, we use an induction over the structure of ∆1 ∧∆2

to show that it can be written as a disjunction of dLTL formulas. As induction
hypothesis, we consider all formulas ∆′1∧∆′2, where at least one of ∆′1 and ∆′2 is
structurally smaller than ∆1 and ∆2 respectively, can be written as a disjunction
of dLTL formulas.

The base case of the induction is when either ∆1 or ∆2 is a partial symbol.
In this case, ∆1 ∧ ∆2 is itself a dLTL formula by definition of dLTL formulas.
The induction step proceeds via case analysis on the possible root operators of
the formulas ∆1 and ∆2

– Case: either ∆1 or ∆2 is of the form s∧∆ for some partial symbol s. Without
loss of generality, let us say ∆1 = s∧∆. In this case, ∆1∧∆2 = (s∧∆)∧∆2 =
s ∧ (∆ ∧ ∆2). By hypothesis, ∆ ∧ ∆2 =

∨
i Γi for some Γi in dLTL. Thus,

∆1 ∧∆2 = s ∧
∨

i Γi =
∨

i(s ∧ Γi), which is a disjunction of dLTL formulas.
– Case: ∆1 is of the form X δ1 and ∆2 is of the form X δ2. In this case,
∆1 ∧ ∆2 = X(δ1 ∧ δ2). By hypothesis, δ1 ∧ δ2 =

∨
i γi for some γi’s in

dLTL. Thus, ∆1 ∧∆2 = X(
∨

i γi) =
∨

i X γi, which is a disjunction of dLTL
formulas.

– Case:∆1 is of the form X δ1 and∆2 is of the form F δ2. In this case,∆1∧∆2 =
X δ1 ∧F δ2 = (X δ1 ∧ δ2) ∨ (X δ1 ∧FX δ2) = (X δ1 ∧ δ2) ∨X(δ1 ∧F δ2). By
hypothesis, both formulas (X δ1 ∧ δ2) and (δ1 ∧ F δ2) can be written as
a disjunction of dLTL formulas. Thus, ∆1 ∧ ∆2 can also be written as a
disjunction of dLTL formulas

– Case:∆1 is of the form F δ1 and∆2 is of the form F δ2. In this case,∆1∧∆2 =
F δ1∧F δ2 = F(δ1∧F δ2)∨F(δ2∧F δ1). By hypothesis, both formulas δ1∧F δ2
and δ2∧F δ1 can be written as a disjunction of dLTL formulas. Thus, ∆1∧∆2

can also be written as a disjunction of dLTL formulas

Proof (Proof of theorem). The proof proceeds via induction on the structure of
formulas ϕ in LTL(F,X,∧,∨). As induction hypothesis, we consider that all for-
mulas ϕ′ which are structurally smaller than ϕ can be expressed in dLTL(∧,∨).

20 Raha et al.

As the base case of the induction, we observe that formulas p for all p ∈ P,
are dLTL formulas and thus, in dLTL(∧,∨).

For the induction step, we perform a case analysis based on the root operator
of ϕ.

– Case ϕ = ϕ1∨ϕ2 or ϕ = ϕ1∧ϕ2: By hypothesis, ϕ1 is in dLTL(∧,∨) and ϕ2

is in dLTL(∧,∨). Now, ϕ is in dLTL(∧,∨) since dLTL(∧,∨) is closed under
positive boolean combinations.

– Case ϕ = Xϕ1: By hypothesis, ϕ1 ∈ dLTL(∧,∨) and thus ϕ1 =
∨

j(
∧

i∆i).
Now, ϕ = X(

∨
j(
∧

i∆i)) =
∨

j(X(
∧

i∆i)) =
∨

j(
∧

i X∆i) =
∨

i

∧
i∆
′
i (X∆i

is a dLTL formula). Thus, ϕ is in dLTL(∧,∨).
– Case ϕ = Fϕ1: By hypothesis, ϕ1 ∈ dLTL(∧,∨) and thus ϕ1 =

∨
j(
∧

i∆i).
Now ϕ = Fϕ1 =

∨
j(F(

∧
i∆i)). Using lemma 2, we can re-write

∧
i∆i as∨

i Γi for some Γi’s in dLTL. As a result, ϕ =
∨

j

∨
i F(Γi). Thus, ϕ is in

dLTL(∧,∨).

B Sample generation method

To evaluate the performance of the tools FLIE, SYSLITEL, and SCARLET effec-
tively, we rely on our novel sample generation algorithm to generate benchmarks
from LTL formulas. The outline of the generation algorithm is presented in Al-
gorithm 3. The crux of the algorithm is to convert the LTL formula ϕ into its
equivalent DFA Aϕ and then extract random traces from the DFA to obtain a
sample of desired length and size.

To convert ϕ into its equivalent DFA Aϕ (Line 3), we rely on a python
tool LTLf2DFA9. Essentially, this tool converts ϕ into its equivalent formula in
First-order Logic and then obtains a minimal DFA from the formula using a tool
named MONA [18].

For extracting random traces from the DFA (Line 5 and 9), we use a pro-
cedure suggested by [3]. The procedure involves generating words by choosing
letters that have a higher probability of leading to an accepting state. This re-
quires assigning appropriate probabilities to the transitions of the DFA. In this
step, we add our modifications to the procedure. The main idea is that we ad-
just the probabilities of the transitions appropriately to ensure that we obtain
distinct words in each iteration.

Unlike existing sample generation methods, our method does not create ran-
dom traces and try to classify them as positive or negative. This results in a
much faster generation of large and better quality samples.

9 https://github.com/whitemech/ltlf2DFA

Scalable Algorithms for Learning LTL Formulas 21

Algorithm 3 Sample generation algorithm

Input: Formula ϕ, length l, number of positive traces nP , number of negative traces
nN .

1:
2: P ← {}, N ← {}
3: Aϕ ← convert2DFA(ϕ)
4: Loop nP times
5: w ← random accepted word of length l from Aϕ.
6: P ← P ∪ {w}
7: end
8: Loop nP times
9: w ← random accepted word of length l from Ac

ϕ.
10: N ← N ∪ {w}
11: end
12: return S = (P,N)

C List of all formulas used for generating benchmarks

Table 2: Common LTL formulas used in practice [9,11]

Absence: G(¬p0), G(p1→G(¬p0))

Existence: F(p0), G(¬p0) ∨ F(p0 ∧ F(p1))

Universality: G(p0), G(p1→G(p0))

Disjunction of
patterns:

G(¬p) ∨ F(p ∧ F(q)
∨G(¬s) ∨ F(r ∧ F(s)),

F(r) ∨ F(p) ∨ F(q)

Coverage family: F(a1) ∧ F(a2) ∧ . . . ∧ F(an)

Sequence family: F(a1 ∧ F(a2 ∧ F(. . . ∧ F(an))))

D Comparison of tools on existing benchmarks

To address our first research question RQ1 in the ‘Experimental evaluation’ sec-
tion, we compared the performance of three tools on an existing benchmark
suite10 [14]. The benchmark suite has been generated using a fairly naive gener-
ation method from the LTL formulas listed as Absence, Existence, Universality
and Disjunction of patterns listed in Table 2.

10 https://github.com/cryhot/samples2LTL

22 Raha et al.

10−1 100 101 102

10−1

100

101

102

TO

TO

FLIE time
S
C
A
R
L
E
T

ti
m

e

10−1 100 101 102 TO

SYSLITEL time

Fig. 4

2 4 6 8

2

4

6

8

FLIE size

S
C
A
R
L
E
T

si
ze

2 4 6 8

SYSLITEL size

Fig. 5: Comparison of SCARLET, FLIE and SYSLITEL on existing benchmarks. In
Figure 2a, all times are in seconds and ‘TO’ indicates timeouts. The size of
bubbles indicate the number of samples for each datapoint.

Figure 4 represents the runtime comparison of FLIE, SYSLITEL and SCARLET

on 98 samples. From the scatter plots, we observe that SCARLET runs much
faster than FLIE on all samples and than SYSLITEL on all but two samples. Also,
SCARLET timed out only on 3 samples while SYSLITEL timed out on 6 samples
and FLIE timed out on 15 samples.

Figure 5 presents the comparison of formula size inferred by each tool. On
84 out of 98 samples, where none of the tools timed out, we observe that on 65
samples, SCARLET inferred formula size equal to the one inferred by SYSLITEL
and FLIE. Further, in the samples where SCARLET learns larger formulas than
other tools, the size gap is not significant. This is evident from the fact that the
average formula size learned by SCARLET is 4.13 which is slightly higher than
that by FLIE and SYSLITEL, 3.84.

E Scalability on the benchmark having increasing trace
lengths

To address our second research question RQ2 in ‘Experimental evaluation’, we
evaluated the scalability of our algorithm on two sets of benchmarks generated
from formulas ϕcov and ϕseq . While the first benchmark set contains 90 samples

Scalable Algorithms for Learning LTL Formulas 23

with increasing sizes but a fixed length, the second benchmark set contains 90
samples with 200 traces having lengths ranging from 10 to 50.

We provide the results for the second benchmark set here. Figure 6a depicts
the results we obtained by running all three tools on it. The trends we observe
here are similar to the ones we observe in the first benchmark set. SCARLET

performs better on the samples from ϕcov than it does on samples from ϕseq .
The reason remains similar: it is easier to find a formula which is a boolean
combination of length 1, width 1 simple LTL, than a simple LTL of length 3 and
width 1.

Contrary to the results on the first benchmark set, we observe that the in-
crease of runtime with the length of the sample is quadratic. This explains why
on samples from ϕseq on large lengths such as 50, SCARLET faces time-out. How-
ever, for samples from ϕcov , SCARLET displays the ability to scale way beyond
length 50.

20 40

100

101

102

TO

Len of traces

A
v
er

a
g
e

T
im

e

Formula ϕcov

SCARLET SYSLITEL FLIE

20 40

101

102

TO

Len of traces

Formula ϕseq

(a) Scalability in sample lengths

Fig. 6: Comparison of SCARLET, FLIE and SYSLITEL on synthetic benchmarks.
In Figure 6a, all times are in seconds and ‘TO’ indicates timeouts.

	Scalable Anytime Algorithms for Learning Fragments of Linear Temporal Logic

