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Abstract— We present a novel framework for human-robot
logical interaction that enables robots to reliably satisfy (infinite
horizon) temporal logic tasks while effectively collaborating
with humans who pursue independent and unknown tasks.
The framework combines two key capabilities: (i) maximal
adaptation enables the robot to adjust its strategy online to
exploit human behavior for cooperation whenever possible, and
(ii) minimal tunable feedback enables the robot to request coop-
eration by the human online only when necessary to guarantee
progress. This balance minimizes human-robot interference,
preserves human autonomy, and ensures persistent robot task
satisfaction even under conflicting human goals. We validate
the approach in a real-world block-manipulation task with
a Franka Emika Panda robotic arm and in the Overcooked-
Al benchmark, demonstrating that our method produces rich,
emergent cooperative behaviors beyond the reach of existing
approaches, while maintaining strong formal guarantees.

I. INTRODUCTION

Effective human-robot interaction (HRI) requires robots to
operate alongside humans who pursue their own goals — often
without explicitly revealing them. Such instances appear in-
creasingly in domains ranging from smart manufacturing and
logistics to assistive robotics in healthcare and households.
In such scenarios, the robot must not only plan its moves to
satisfy its own task but also adapt online to human behavior
that may be cooperative, indifferent, or even obstructing its
task. At the same time, HRI becomes more effective and
enjoyable for the human, if robots do not only react to what
humans do, but respect and even leverage human behavior
rather than always overwriting or constraining it.

This paper addresses this challenge in the context of
human-robot logical interactions (HR/I) where the robot
is assigned a high-level temporal task, expressed in linear
temporal logic (LTL), and the human simultaneously pursues
an unknown strategic latent task. As an example, consider
the simplified manipulation task depicted in Fig. [T} where a
Franka Emika Panda robotic arm takes turns with a human
to place blocks in a 3 x 3 domain. The robots’ task is to
ensure that the majority of the cells is always eventually
occupied with no adjacent cells filled, while the hidden
human objective is to form a diagonal. If the domain of
a logical task is restricted (as in this example), all possible
strategic interactions of the human and the robot can be en-
coded in a two-player game graph, schematically illustrated
in Fig. 2] Particular states in this graph fulfil the robots’

Fig. 1.

A simplified gridworld block-manipulation domain from our
experimental setup, where a Franka Emika Panda robotic arm takes turns
with a human to place blocks in a 3 X 3 grid. The robot places blue
blocks, while the human places red blocks. The top-left inset illustrates
the robot’s feedback to the human, suggesting the removal of the block
in cell (1,3) or (2,2). A video of the experiment is available at https:
/lyoutu.be/61thSZD;j5Ks|

(resp. humans’) objective and are intended to be visited
always again by the robot (resp. the human). However, as
the robot and the human are both able to move blocks, they
can obstruct the satisfaction of each others’ goal. Importantly,
this might already happen if both have the same goal, e.g.,
forming a diagonal. Here, the human can persist in forming
the diagonal south-west-to-north-east, while the robot persist
to form the south-east-to-north-west diagonal, resulting in
a live lock. This problem is amplified if robot and human
objectives differ, or are even incompatible.

To solve this problem, this paper introduces a novel HR/I
framework which enables robots to persistently satisfy their
logical tasks, while ensuring human autonomy whenever
possible and requesting cooperation only when necessary.

A. Related Work

Due to the enormous relevance of reliable human-robot
interaction (HRI) for trustworthy autonomy, there is an
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enormous body of worK'|in this research area. We therefore
only focus on HR/I scenarios described by a game between
the robot and the human. This research line is rooted in
the seminal papers [1], [2] which are motivated by the
observation that LTL is a powerful specification language
to describe strategic objectives such as traffic rules for
autonomous driving [3], or robot navigation [4].

A natural formulation of HR/I is as a two-player game
between the robot and its environment. There exists a rich
body of work on graph games [5]-[12] which can be
leveraged to compute reactive strategies for the robot to
fulfill diverse complex tasks. Unfortunately, most solutions
typically either over-constrain the robot or the human. In the
first case, a robot strategy is computed which ensures the
robots’ objective against all human strategies. This, however,
makes solutions overly restrictive and typically (as in the
manipulation domain example above) fails to produce a
robot strategy altogether. In the second case, full cooperation
between the robot and the human are assumed, and a strategy
is computed for both. Thereby, the human is forced into a
very rigid, fully constrained behavior — ensuring reliability
but at the cost of suppressing human autonomy.

A middle-ground is provided by various approaches which
allow for increased human autonomy. When only logical
safety is concerned — i.e., ensuring that no bad strategic
interaction happens between the human and the robot —
reactive shielding mechanisms [13]-[16] which intervene
with human behavior only to avoid such bad interactions,
can be deployed. If, however, logical liveness objectives are
present — i.e., requiring that something good (e.g., forming a
diagonal in the above example) eventually happens — safety
shielding is not sufficient to guarantee the satisfaction of the
specification (as illustrated by the live-lock of human and
robot trying to form a diagonal discussed before).

To mitigate these issues, many approaches explicitly
model human behavior — either by predicting from tra-
jectories [17] or by representing it as a Markov Decision
Process [18] — and integrate these models into the synthesis
framework. Alternatively, HR/I can be directly modelled as
a stochastic two-player game, as e.g. in [19]. While this in-
troduces local viability of human strategies via stochasticity,
it does not capture the need for strategic human autonomy.

To further improve human autonomy, admissibility-based
methods, such as [20], [21] can be used, which enable robots
to adopt behaviors that remain robust against a broad range of
human actions while still ensuring task satisfaction. Orthog-
onal to this approach, Schuppe et al. [22] focus on interactive
advice, where the robot provides assume—guarantee style
guidance to the human to support the satisfaction of a shared
objective with minimal cooperation by the human. However,
these approaches require the robot to commit to a fixed pre-
computed strategy and rely either on stringent assumptions
on human behavior, or on static, predefined forms of advice.

A different, but related approach to HR/I only considers
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a (non-reactive) logical planning objective for the robot and
ensures safety of humans in its workspace by implementing
the resulting plan of the robot via control-barrier functions
(CBF), which act as a safety filter on the resulting underlying
continuous robot dynamics [23]. This approach was recently
incorporated into cooperative HR/I frameworks, such as
[24]-[26], where the (reactive) logical objectives of both
the robot and the human are known, allowing an offline
centralized game solution. Online human robot adaptations
are only considered in the lower physical layer via CBFs but
without any strategic autonomy. Similarly, recent dynamic
game approaches to HRI, e.g. [27], [28] are focusing on
the immediate physical, rather than the long-term strategic
adaptation and interaction of humans and robots.

In contrast to these approaches, we present an autonomy-
driven approach to HR/I that focuses on high-level strategic
interactions. While prior work with this focus, such as [20]-
[22], [29], [30] result in pre-computed forms of cooperation
or feedback and only consider fixed horizon objectives
(as discussed before), our framework exploits the synergy
between online adaptation and runable feedback to generate
complex emergent cooperation behavior for finite and infinite
horizon LTL tasks. Formally, our novel framework is enabled
by permissive strategy templates [31] for w-regular games
(derived from the LTL objective ¢) which allow to concisely
represent infinitely many strategies. Strategy templates have
been applied to various contexts [32]—[39], but to the best
of our knowledge, we are the first to apply them to HR/I.
In particular, we leverage recent results from [33] which
allow to capture all human and robot strategies that guarantee
satisfaction of ¢ under minimal cooperation. This forms the
theoretical basis for our novel online adaptation under strong
formal guarantees.

B. Contribution

Our main contribution is a general framework for HR/I,
which is applicable to the full class of LTL tasks and does
not assume any particular strategic cooperation of the human.
Conceptually, this framework ensures that the robot treats its
interactions with a human not solely as a source of uncer-
tainty to be constrained, but increasingly as a resource to be
utilized. When pursuing a high-level LTL task ¢, the robot
strategy (i) adapts at runtime to the humans’ (i.e., forming a
south-west-to-north-east diagonal as pursued by the human
instead of insisting on forming the other one) to maximize
cooperation whenever possible, and (ii) provides strategic
feedback to the human only when the robots’ adaptation
alone cannot ensure progress towards the satisfaction of ¢
(e.g., if the human persistently removes the middle block
obscuring to form a diagonal the robot will ask the human
to stop taking this move). This minimizes human-robot
interference, maximizes cooperation and preserves human
autonomy whenever possible, while still guaranteeing the
eventual satisfaction of robot tasks if the human eventually
listens to the provided feedback.

We validate our approach both in simulation and on
robotic hardware. In addition to the robotic manipulation



domain implementation in Fig.[I] we evaluate our framework
in the Overcooked-Al simulation environment [40], a widely
used benchmark for collaborative planning with multiple
actors. In this domain, the human and the robot repeatedly
perform cooking tasks with the objective of persistently
producing soups. Each participant is assigned an independent
LTL task that encodes a recipe specification. As in the
gridworld domain, these tasks are private and not known to
the other. The human behavior is simulated by a probabilistic
strategy.

In this application scenario the advantage of using w-
regular specifications over commonly used reachability tasks
becomes apparent. As both agents should produce as many
specified soups as possible, they can actually cooperate even
if their specifications are conflicting — simply by ’taking
turns’ in producing the ’right’ soup. We show that this
intuitive cooperative behavior autonomously emerges via the
online adaptation and feedback mechanism provided by our
framework. To the best of our knowledge, the complexity
of the emergent HR/I behavior provided by our framework
thereby vastly exceeds the capabilities of all existing ap-
proaches while providing formal guarantees.

II. PROBLEM SETUP

We focus on a turn-based human-robot interaction sce-
nario, where the robot and the human alternately act in a
shared environment. Given a high-level temporal task for the
robot, our goal is to develop a framework that enables the
robot to adapt its strategy online to the human’s observed
behavior, and to provide feedback in a principled, tunable
manner, so that the robot’s task is reliably satisfied even when
the human pursues an independent objective whose chosen
strategy may conflict with the robot’s progress.

A. Reactive Planning Domain

We model the interaction between the robot and the human

as a reactive planning domain D = (S, sg, A, AP, L), where:

e S = 5,18 is a set of states, partitioned into robot
states S, and human states Sp;

e Sg € S is the initial state;

o A= A,.UA, is the set of actions (modeled as directed
edges), partitioned into robot actions A, C S;. x S}, and
human actions A, C S, x S,

o AP is the set of task-related propositions that can either
hold or not hold in a given state.

e L: S — 24P is a labeling function that labels each
state with the set of propositions that hold in that state.

The planning domain can be specified using the planning do-
main description language (PDDL) [41], a standard language
in the field of AI planning. In a PDDL description, a state
captures relevant objects and their locations, while actions
are defined in terms of preconditions and effects.

A run p = 595153 . .. of the planning domain is an infinite
sequence of states such that s = sy and for all ¢ > O,
(8iy8i+1) € A, i.e., there is an action that takes the system
from state s; to state s;11. The run p induces a trace L(p) =
L(s0)L(s1)L(s2) ..., an infinite word over 247, which is a

sequence of labels corresponding to the states in the run. We
assume that the robot and human take turns to act, i.e., if
s; € Sy, then s;41 € Sy, and vice versa.

A robot strategy w.: S*S, — A, is a function that maps a
sequence of states (representing the history of the interaction)
ending in a robot state to the action that the robot should take.
A run p = $pS152... is said to be m,.-run if for all ¢ > 0,
whenever s; € S, then s;41 = (8081 ...5;). A human
strategy 7, and 7p-run are defined similarly.

Example 1. Fig. [2] shows a partial view of a turn-based
human-robot interaction modeled as a reactive planning
domain. Each circle (e.g, rO,r1,...) corresponds to a robot
state in S, and each rectangle (e.g., h0,h1,...) corresponds
to a human state in .Sp,. Inside each node, the 3 x 3 grid
represents the environment: red squares denote human-placed
objects, and blue circles denote robot-placed objects. Edges
correspond to actions in A, alternating between human and
robot moves according to the turn-based interaction. For
example, the edge from state r2 to state h2 represents a
robot action that removes a (blue circle) object from cell
(1,1) (i-e., lst row, st column). Fig. |1 shows an image of
the same action being executed by a Franka robotic platform
in a real-world setting.

A labeling function L can be defined to capture task-
related propositions in AP. For instance, let us consider
the propositions AP = {adj,diag,major}, where adj
indicates that no two objects are adjacent (horizontally or
vertically), diag indicates that a diagonal is fully occupied,
and major indicates that at least 4 out of 9 cells are occupied
(majority-occupied). In that case, adj holds only in states
r0,t1,t2; diag holds in states r5, t2; and major holds in
every state except hO and rO. From the initial state hO, a
possible run is p = hO (r1h1r2h2)¥, which induces the
trace L(p) = {} {major}~.

B. Temporal Tasks as LTL formulas

To express robot/human tasks, we use linear temporal
logic (LTL), a specification language that extends proposi-
tional logic with temporal operators [42]. Given a set AP of
atomic propositions, LTL formulas are recursively defined as
follows:

pu=T|p|~eleiANp2 | Op |1 U 2

where p € AP is an atomic proposition; — and A are the
boolean operators’ negation and conjunction, respectively;
and () and U are the temporal operators 'next’ and ’until’,
respectively. Other standard operators such as disjunction
(V), implication (=), finally (), and globally () can be
derived from the above operators. The semantics of LTL
formulas are defined over infinite sequences of sets of
atomic propositions in (247)“ and can be found in standard
books [43, Chapter 5.1.2]. We say a run p of a planning
domain satisfies an LTL formula ¢, denoted p | ¢, if the
trace induced by p satisfies (.

Example 2. Consider again the reactive planning domain in
Ex. |1 with atomic propositions AP = {adj,diag, major}.
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An example of a partial reactive planning domain for turn-based human-robot interaction in a grid world. The robot controls the circle states,

while the human controls the rectangle states. Each state contains a 3 X 3 grid showing the current positions of the human-placed objects (red squares) and
the robot-placed objects (blue circles). Directed edges represent possible actions leading to successor states. The robot’s objective is to repeatedly reach
states with majority-occupied cells where the placed objects are non-adjacent (i.e., no two occupied cells are neighbors), as illustrated in states t1 and t2.
Green dashed edges denote live actions, which are the suggested actions by the strategy templates, while dotted edges denote sequences of actions that

lead to the target states.

Suppose the robot’s task is to repeatedly reach states where
no two objects are adjacent and at least four cells are
occupied, which can be expressed by the LTL formula ¢, =
00(adj Amajor). A human’s task could be to repeatedly
reach a state where a diagonal is fully occupied, expressed by
the LTL formula ¢;, = O0diag. A run that repeatedly visits
states t1 satisfies both tasks, while a run that eventually only
loops in state t2 only satisfies the robot’s task.

C. Problem Statement

In this work, we are interested in the scenario of human-
robot interaction where both the robot and the human have
their own independent tasks, which are not known to each
other. In such settings, each agent may follow a strategy that,
even if unintentionally, can block or halt progress toward the
other’s task. Our goal is to develop a framework that enables
the robot to adapt its strategy based on local observations
and give feedback to the human when necessary, in order to
persistently satisfy its own task over time.

Problem 1. Given a human-robot interaction modeled as a
reactive planning domain D with an LTL task ¢ for the robot
in the presence of a human pursuing an unknown latent task,
develop a framework that (a)

1) captures all cooperative behaviors of the human that
enable the robot to satisfy its task p;

2) adapts the robot’s strategy based on local observations
of the human’s strategic behavior during interaction;

3) incorporates a tunable mechanism for providing feed-
back to the human when needed, thereby facilitating
the robot’s progress toward fulfilling its task .

Example 3. Consider again the interaction in Ex. |1} where
the robot’s task is to repeatedly reach states with majority-
occupied cells in which the placed objects are non-adjacent,
as expressed by the LTL formula ¢, = 00(adj A major)

in Ex. 2] Suppose the human, pursuing its own latent task,
repeatedly places objects along a diagonal in the grid. From
the robot’s perspective, this behavior can lead to a run
satisfying ¢,, and thus this (unintentional) cooperation of
the human should be exploited by the robot to fulfill ¢,..

However, in order to do so, the robot can not commit
to a single strategy in advance to ensure that ¢, is satisfied
regardless of the human’s behavior. To see this, let us assume
that the robot choses to follow a fixed strategy which tries
to satisfy ¢, via a configuration as in t1. If the human still
attempts to form a diagonal, their interaction will get stuck
in a cycle where task ¢, will never be satisfied. Instead,
the robot must adapt its strategy by recognizing, from local
observations, that the human is systematically filling the
diagonal. It should then autonomously choose actions that
lead to states where ¢, is satisfied via a configuration as
in t2. This, however, is only possible because ¢, and the
humans latent task can indeed be satisfied simultaneously.

If, however, both objectives are conflicting, it does not
suffice for the robot to adapt to the human behavior. As an
example, consider a scenario where the human persistently
takes actions h2 — r3 and h3 — r4. In such cases, the robot
must recognize that the human’s behavior can no longer be
exploited for (unintended) cooperation. The robot then gives
feedback to the human—e.g., requesting to remove the object
at cell (2,2) (by taking action h3 — t1).

III. ADAPTABILITY AND FEEDBACK MECHANISMS VIA
PERMISSIVE STRATEGY TEMPLATES

To reason about the strategic behavior of the robot for
the LTL task, we reduce the planning domain along with
the LTL task to a two-player game between the robot and
human, as commonly done in the literature [43]. We then
leverage the recently developed notion of permissive strategy
templates [31], [32] in graph games to address Prob.



A. w-Regular Games

As a first step, we introduce the notion of two-player (turn-
based) w-regular games, which will serve as the foundation
for our framework.

Definition 1. A two-player (turn-based) w-regular game is a
pair G = (D, Q), where D = (S, s, A, AP, L) is a reactive
planning domain (as defined in Sec. [[I-A), and Q@ C S“ is
an w-regular set of infinite sequences of states that defines
the winning condition of the game.

Such w-regular games can be canonically represented as
parity games [43]. A parity game is a special case of an
w-regular game where the winning condition €2 = Parity|c]
is defined by a coloring function c: S — N that assigns a
natural number (color) to each state, and a run p belongs to
Parity|c] if the maximum color that appears infinitely often
in p is even. Using standard techniques [43], we can reduce
a planning domain along with an LTL task to a parity game
as formalized below.

Proposition 1. Given a reactive planning domain D and an
LTL formula ¢ over AP, we can construct a parity game
G = (D', Q) such that there is a bijective correspondence
between the runs of D and the runs of D', and a run p of
D satisfies  if and only if the corresponding run p' of D'
belongs to .

B. Permissive Strategy Templates

In two-player games, a strategy template generalizes the
notion of a strategy by succinctly representing an infinite
family of strategies through local constraints on the agent’s
actions. Formally, a strategy template II for agent ¢ consists
of the following types of constraints:

e Unsafe actions U C A;: actions that the agent is

prohibited from taking;

o Co-live actions C' C A;: actions that may only be taken
finitely many times along any run;

o Live-groups H C 24i: sets of actions such that, if the
source state of some H € H is visited infinitely often,
the agent must take at least one action from the set
infinitely often.

A run p is said to comply with a strategy template II, if it
satisfies all the specified constraints. A strategy 7 is said to
follow a strategy template II, denoted 7 = II, if all 7-runs
comply with II. For a detailed formal definition and further
intuition, see [31].

Recent work [33] shows that, given a parity game between
a robot and a human, it is possible to synthesize a strategy
template for the human that captures all cooperative behav-
iors, and a corresponding strategy template for the robot
that encompasses all strategies guaranteeing the winning
condition against any cooperative human behavior.

Proposition 2. Given a parity game G = (D,Q), a pair
of strategy templates (I1.,11,,) for the robot and human,
respectively, can be synthesized such that (i) every run p € §)
also complies with 1,; and (ii) every strategy =, E II,
ensures that all w.-runs complying with 11;, belong to (0.

Example 4. For the grid world in Fig. [2] with the robot’s
task ¢, = O00(adj Amajor) as in Ex. 2| a parity game can
be constructed as per Prop. 1| which has the same structure
as the planning domain in Fig. 2] but with an appropriate
coloring function c that assigns all states where adj Amajor
holds the color 2 (even) and all other states the color 1 (odd).
This captures the robot’s objective of repeatedly reaching
states with majority-occupied cells where the placed objects
are non-adjacent. Using the synthesis procedure in Prop.
we can compute a pair of strategy templates (II,.,1I;) for
the robot and human, respectively, that capture cooperative
behaviors. For instance, the human’s strategy template 11,
includes live-groups {h3 — t1} (in addition to other live
groups as shown by green dashed edges in Fig. [2), which en-
sure that the human does not consistently obstruct the robot’s
ability to make progress as discussed in Ex. [3] Similarly, the
robot’s strategy template II,. includes live-groups that ensure
the robot can always reach states satisfying adj A major as
long as the human follows II,.

C. Adaptation and Feedback Mechanism

While the results in Prop. [2] provide a foundation for cap-
turing cooperative behaviors, addressing (I)) of Prob. [T} they
do not directly address the adaptation and feedback aspects
outlined in (2) and (3) of Prob. [} To this end, we propose
a framework that leverages the permissive nature of strategy
templates (II,.,II;) to enable the robot to adapt its strategy
based on its strategy template II,. and provide feedback to
the human based on the human’s strategy template I1;.

Adaptation: Since the template I1,. provides a set of possible
actions at each state, the robot does not need to commit
to a single strategy in advance. Instead, at runtime, the
robot randomly selects an action from the set of enabled
actions in IL,. at its current state. This approach allows the
robot to adapt its choice of actions whenever it revisits a
state. In particular, if an action taken by the robot does not
lead to a desirable outcome (e.g., the human appears to be
uncooperative), the run will eventually return to the same
state, and by randomness, the robot can try different actions
from the enabled set in II.. This adaptation mechanism
effectively addresses (2)) of Prob.

Feedback Mechanism: To facilitate a tunable feedback
mechanism as outlined in (@) of Prob. [I] we introduce a
feedback threshold « € [0, 1] that determines how often
the robot provides feedback to the human. Note that, since
unsafe actions in II;, are actions that the human must avoid
satisfying the robot’s task, the robot always communicates
about unsafe actions whenever such an action is available
at the current state. For other types of constraints in IIy,
i.e., co-live actions and live-groups, the robot observes the
human’s actions and monitors how often the human violates
these constraints (i.e., takes co-live actions or avoids actions
from a live-group). Whenever the frequency of such viola-
tions exceeds the feedback threshold «, the robot provides
feedback to the human from the next time step onward
until the frequency of violations drops below a. Due to



Prop. 2l as long as the human follows IIj, the robot’s
strategy will ensure that the task is satisfied. This feedback
mechanism enables the robot to provide feedback in a tunable
manner, only when human actions deviate significantly from
the cooperative behaviors captured by IIj, thus effectively
addressing (3) of Prob. [T}

Example 5. Continuing from Ex. [ the robot can adapt its
strategy at runtime by randomly selecting actions from the
enabled set in its strategy template II... For instance, suppose
the human consistently places objects along the diagonal, as
discussed in Ex. [3] Consider the scenario in Fig. 2| where the
robot is at state hO, and currently it has made progress toward
reaching a state with configuration as in t1. If the human
continues to place objects along the diagonal, by taking
actions h0 — r1 (which violates the live-group {h0 — r0}
in II), the robot will adapt its strategy that now may lead to
states like t2, which can accommodate the human’s diagonal
placements while still satisfying ¢,.. Now consider a scenario
where the human, pursuing its own latent task, consistently
places objects in a manner that obstructs the robot’s task and
loops between states h2,r3,h3, r4 as discussed in Ex. 3| In
this case, once the frequency of violations of the live-groups
exceeds the feedback threshold «, the robot will provide
feedback to the human, requesting to take the live action
h3 — t1, which will help the robot make progress toward
satisfying its task ¢,

IV. EXPERIMENTS

We evaluate the proposed framework on two experimental
domains that illustrate complementary aspects of our novel
HR/I framework. To demonstrate the power of our approach
on a physical robotic platform, the first domain is the simpli-
fied gridworld block-manipulation setting depicted in Fig.
and described through our running example Ex. [T to[5] This
example provides an interpretable test bed for visualizing
how the robot adapts its strategy online in response to human
actions and issues feedback in a tunable manner once the
human blocks progress beyond a specified threshold.

The second domain is the Overcooked-Al environ-
ment [40], a standard benchmark for collaborative planning,
which highlights the power of guidance and adaptability to
enable the fully autonomous emergence of complex strategic
human robot interactions. In particular, the natural w-regular
structure of the specifications allows us to investigate differ-
ent levels of difficulty for such emergent interactions, ranging
from complete alignment to partial or full misalignment
between the human’s and the robot’s tasks.

Together, these experiments showcase both the trans-
parency of our method in symbolic domains and its power
to produce complex emergent strategic human robot interac-
tions fully autonomously at runtime, which go far beyond
the capabilities of existing approaches.

Remark 1. Note that, [22] also considers a human-robot
interaction 'Follow My Advice’ (FMA) scenario where the
robot provides advice to the human. However, their approach
focuses on computing sufficient assumptions for the human

to device a static feedback mechanism based on a pre-
computed robot strategy to achieve a finite-horizon goal.
Our framework, in contrast, emphasizes online adaptability
of the robot’s strategy to align with the human’s behavior and
employs a tunable feedback mechanism to handle persistent
w-regular objectives that we experimentally validate below.
A faithful comparison would require re-formulating our
settings to finite-horizon tasks, but this would undermine
the core focus of our framework on the interplay between
adaptability and feedback for persistent objectives.

A. Gridworld Block-Manipulation

In this experiment, we implemented the simplified grid-
world block-manipulation domain on a Franka Emika Panda
robotic arm running ROS jazzy to demonstrate the feasibility
of our framework beyond the abstract model. The setup
consists of a robot hand operating on a 3 x 3 workspace
with tangible blocks that can be placed or removed, cor-
responding directly to the states illustrated in Ex. The
human interacts with the workspace by placing red blocks,
while the robot places blue blocks. The system monitors the
evolving configuration and evaluates whether the robot’s task
specifications (e.g., maintaining non-adjacent placements)
are currently satisfied.

The reactive planning domain underlying this demonstra-
tion comprised approximately 7000 states and 18 propo-
sitions, encoding all possible placements of human and
robot objects together with legal turn-taking moves. Our
implementation required about 6 seconds to construct the
parity game and synthesize the strategy templates, which
was performed offline before execution. During execution,
the robot follows its adaptive strategy: it updates its actions
based on local observations of human moves, and when
the human’s behavior risks blocking task satisfaction (as in
Ex. [3), the robot generates feedback through a display.

We include an image of the setup in Fig.[I]to illustrate how
the abstract domain is realized in practice. This experiment
highlights how our framework scales from the formal model
to a real-world setting, providing an interpretable test bed to
assess both adaptability and human feedback.

B. Overcooked-Al

We further evaluate our framework in the Overcooked-
Al environment, a widely used benchmark for collaborative
planning with multiple actors. In this domain, the human and
the robot repeatedly perform cooking tasks with the objective
of persistently producing soups. Each participant is assigned
an independent LTL task that encodes a recipe specification.
As in the gridworld domain, these tasks are private and not
known to the other.

We consider three classes of experimental scenarios, char-
acterized by the relation between the human’s and the robot’s
recipes. In the first class, the recipes are identical, such
that both participants unknowingly pursue the same task.
In the second class, the recipes are distinct but compatible,
meaning that there exists at least one type of soup that
simultaneously satisfies both specifications. In the third class,



the recipes are incompatible, i.e., there is no soup that
satisfies both specifications simultaneously. These classes
capture increasing levels of misalignment between the tasks
pursued by the human and the robot. Table [[| summarizes the
recipe configurations considered in our experiments.

TABLE I
RECIPE CONFIGURATIONS IN THE OVERCOOKED-AI EXPERIMENTS.

Scenario Robot recipe  Human recipe
Identical = 3 onions = 3 onions
Incompatible = 3 onions = 2 onions
Compatible > 2 onions < 2 onions

The Overcooked-Al environment provides a natural in-
stantiation of persistent tasks, as both the human and the
robot must repeatedly complete recipes over time. Each
recipe specification corresponds to an w-regular objective: an
infinite run satisfies the task if the required recipe is produced
infinitely often. This allows us to evaluate not only whether
a single goal is reached, but also whether the tasks of the
human and the robot can be persistently satisfied.

We model the Overcooked-Al environment as a reactive
planning domain as per Sec. where the states encode
the positions of the human and robot, the locations of
ingredients, and the status of soups being cooked. The actions
correspond to movement and interaction commands available
to each participant. The w-regular tasks for the human
and the robot are specified as a parity condition over the
states, which can be derived from the recipe specifications.
The domain consists of approximately 68000 states with
over 200 propositions encoding the relevant features of
the environment. We implement the synthesis procedure in
Prop. [2 to compute a pair of strategy templates (I1,.,11;) for
the robot and human, respectively, that capture cooperative
behaviors, which took around 3 minutes to compute offline
before execution. The robot then executes the adaptation and
feedback mechanism as described in Sec. [[Ill while the human
is simulated by a probabilistic strategy for its recipe.

We ran the three recipe scenarios (identical, compatible,
incompatible) under different values of the feedback thresh-
old o ranging from 0.00 to 0.10. For each scenario, the
system was executed until 10 soups were delivered. Each run
lasted up to 500 moves with an execution time of 1 minute
and was repeated 10 times to account for the randomness in
the human’s and robot’s action selection. For each run, we
recorded the following metrics: (i) the percentage of soups
delivered that satisfy the robot’s recipe, (ii) the percentage
that satisfy the human’s recipe, and (iii) the percentage that
satisfy both recipes simultaneously. Additionally, we tracked
the frequency of feedback issued by the robot throughout
the run. Fig. [3] presents the temporal evolution of these
metrics across all scenarios, illustrating how adaptability and
feedback influence persistent task satisfaction.

Identical recipes. In the identical recipe setting, the human
and the robot unknowingly pursue the same recipe specifica-
tion. As shown in Fig. [3|(a), both the human’s and the robot’s
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Fig. 3. Satisfaction of human and robot recipe tasks over time in

Overcooked-Al for (a) identical recipes, (b) incompatible recipes, and (c)
compatible recipes. The plots show the proportion of runs satisfying each
objective as well as frequency of feedback given.

recipes are satisfied persistently across all runs. Crucially,
no feedback is ever issued in this case. This illustrates the
benefit of adaptability: even if the human and the robot start
with different strategies for producing the same recipe, the
robot is able to adjust online so that their behavior naturally
aligns. In a system without adaptability, feedback would
likely be needed to bring their strategies together, whereas
our framework allows cooperation to emerge autonomously
at runtime. Note that this also showcases the advantage of our
framework over the static feedback mechanism in [22] (see



Rem. [T)), which would issue feedback even when the human
and robot have identical tasks, since it does not adapt the
robot’s strategy online.

Incompatible recipes. In the incompatible recipe setting, the
human and the robot follow recipe specifications such that no
soup can satisfy both recipes simultaneously. Consequently,
as shown in Fig. [3] (b), the number of soups delivered
that satisfy both recipes (green) remains zero. However, as
objectives are formulated as w-regular properties, it suffices
to always eventually deliver a soup which satisfies the
human’s or robots’ recipe, respectively. Hence, both agents
can still cooperate by ’taking turns’ in producing a soup via
the humans’ (orange) and the robots’ (blue) recipe. Fig. [3]
(b) shows that this intuitive cooperative behavior indeed
autonomously emerges and is influenced by the feedback
threshold. As the feedback threshold « increases, the robot
becomes more lenient to human non-cooperation, leading to
a higher fraction of runs in which the human’s recipe is
delivered while the robot’s satisfaction decreases. This effect
highlights the role of feedback tuning: with an appropriately
chosen threshold (in this case, o = 0.07), both the human
and the robot succeed in satisfying their respective recipes
approximately 50% of the time persistently, demonstrating
the importance of calibrated feedback sensitivity for the
quality of the emerging cooperative behavior.

Compatible recipes. In the compatible recipe setting, the
human and the robot pursue different recipe specifications,
but there exists at least one soup that satisfies both. As shown
in Fig. 3] (¢), in our experiments the human persistently
satisfies their recipe in all runs, while the robot adapts its
strategy and issues feedback to ensure its own recipe is also
satisfied. Even with higher thresholds, the robot manages to
satisfy its recipe in more than 70% of runs by adapting its
strategy online towards the shared goal. When combined with
more frequent feedback (i.e., lower thresholds), the robot
can further increase the rate of joint satisfaction, achieving
up to 95% of runs where both recipes are satisfied. This
demonstrates the synergy between adaptability and feedback
tuning, which together enable persistent satisfaction of both
recipes.
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