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We study games with reachability objectives under energy constraints. We first prove that 
under strict energy constraints (either only lower-bound constraint or interval constraint),
those games are LOGSPACE-equivalent to energy games with the same energy constraints 
but without reachability objective (i.e., for infinite runs). We then consider two relaxations 
of the upper-bound constraints (while keeping the lower-bound constraint strict): in the 
first one, called weak upper bound, the upper bound is absorbing, i.e., when the upper bound 
is reached, the extra energy is not stored; in the second one, we allow for temporary 
violations of the upper bound, imposing limits on the number or on the amount of 
violations.
We prove that when considering weak upper bound, reachability objectives require 
memory, but can still be solved in polynomial-time for one-player arenas; we prove that 
they are in coNP in the two-player setting. Allowing for bounded violations makes the 
problem PSPACE-complete for one-player arenas and EXPTIME-complete for two players.
We then address the problem of existence of bounds for a given arena. We show that 
with reachability objectives, existence can be a simpler problem than the game itself, and 
conversely that with infinite games, existence can be harder.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Weighted graphs are a convenient formalism to address questions related to consumption, production and storage of 
resources: vertices represent the possible configurations of the system under study, and transitions carry positive or negative 
integers to represent the evolution of resources. When dealing with open systems, weighted graphs are used as the arenas 
of two-player turn-based games, modelling the interactions of the system with its hostile environment. Various objectives 
have been considered for such games, such as optimizing the total or average amount of resources that have been collected 
along the play, or maintaining the total amount within given bounds. The latter kind of objectives, usually called energy 
objectives [8,2], has been widely studied in the untimed setting [7,10,13,18,23,25,28,6,4,14], and to a lesser extent in the 
timed setting [3,5]. Energy objectives can be used to model the evolution of the available energy in an autonomous system 
that has to achieve its tasks, but also recharge batteries to avoid running out of power. Energy objectives were used to 
model moulding machines: such machines inject molten plastic into a mould, using pressure obtained by storing liquid in a 

✩ This work was supported by UMI Relax.

* Corresponding author.
E-mail addresses: loic.helouet@inria.fr (L. Hélouët), nicolas.markey@irisa.fr (N. Markey), ritam.raha@uantwerpen.be (R. Raha).
https://doi.org/10.1016/j.ic.2021.104806
0890-5401/© 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ic.2021.104806
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2021.104806&domain=pdf
mailto:loic.helouet@inria.fr
mailto:nicolas.markey@irisa.fr
mailto:ritam.raha@uantwerpen.be
https://doi.org/10.1016/j.ic.2021.104806


L. Hélouët, N. Markey and R. Raha Information and Computation 285 (2022) 104806
tank [11]; the level of liquid has to be controlled to maintain sufficient pressure, but excessive pressure in the tank reduces 
the lifetime of the valve.

Energy games impose strict constraints on the energy level at all stages of the play. Two kinds of constraints have 
been mainly considered in the literature: lower-bound constraints (a.k.a. L-energy constraints) impose a strict lower bound 
(usually 0), but no upper bound; on the other hand, lower- and upper-bound constraints (a.k.a. LU-energy constraints)
require that the energy level always remains within a bounded interval [L; U ]. Finding strategies that realize L-energy
objectives along infinite runs is in PTIME in the one-player setting, and in NP ∩ coNP for two players; for LU-energy
objectives, it is respectively PSPACE-complete and EXPTIME-complete [2]. Some works also consider the existence of an 
initial energy level for which a winning strategy exists [10].

In this paper, we focus on weighted games combining energy objectives with reachability objectives. Our first result is 
the (expected) proof that L-energy games with or without reachability objectives are interreducible; the same holds for LU-
energy games. We then focus on relaxations of the energy constraints, in two different directions. In both cases, the lower
bound remains unchanged, as it corresponds to running out of energy, which we always want to avoid. We thus only relax
the upper-bound constraint. The first direction concerns weak upper bounds, already introduced in [2]: in that setting, hitting 
the upper bound is allowed, but there is no overload: trying to exceed the upper bound simply maintains the energy level at 
this maximal level. Following [2], we name these objectives LW-energy objectives. They could be used e.g. as a (simplified)
model for batteries. When considered alone, LW-energy objectives are not much different from L-energy objectives, in the 
sense that the aim is to find a reachable positive loop. LW-energy games (with no other objectives besides maintaining the 
energy above L) are in PTIME for one-player games, and in NP ∩ coNP for two players [2]. When combining LW-energy and 
reachability objectives, we prove in this paper that the situation changes: different loops may have different effects on the 
energy level, and we have to keep track of the final energy level reached when iterating those loops.

We introduce and study a second way of relaxing upper bounds, which we call soft upper bound: it consists in allowing 
a limited number (or amount) of violations of the soft upper bound (possibly within an additional strong upper-bound):
when modelling a pressure tank, the lower-bound constraint is strict (pressure should always be available) but the upper
bound is soft (excessive pressure may be temporarily allowed if needed). We consider different kinds of restrictions (on the 
number or amount of violations), and prove that deciding whether Player 1 has a strategy to keep violations below a 
given bound is PSPACE-complete for one-player arenas, and EXPTIME-complete for two-player ones. Then we consider the 
apparently simpler existence problem, which aim is to decide whether an upper bound allows to win an energy game. We 
give complexities of this problem for reachability and infinite games. Surprisingly, depending on the nature of the game,
existence can be easier or harder than the corresponding game with a given upper bound.
Related Work: Quantitative games have been considered in many articles since the 1970s, with various kinds of objectives,
such as ultimately optimizing the total payoff, mean-payoff [16,29], or discounted sum [29,1]. Energy objectives, which 
are a kind of safety objectives on the total payoff, were introduced in [8] and rediscovered in [2]. Several works have 
extended those works by combining quantitative conditions together, e.g. multi-dimensional energy conditions [18,25] or
conjunctions of energy- and mean-payoff objectives [10]. Combinations with qualitative objectives (e.g. reachability [9] or
parity objectives [7,12,14]) were also considered. Similar objectives have been considered in slightly different settings e.g.
Vector Addition Systems with States [27] and one-counter machines [20,19,22]. This work is an extended version of [21]
containing full proofs of our results. The part of the paper addressing the existence problem (Sec. 6) contains new material 
w.r.t. the conference paper.

2. Preliminaries

Definition 1. A two-player turn-based arena is a 3-tuple G = (Q 1, Q 2, E) where Q = Q 1 � Q 2 is a set of states, E ⊆ Q ×
Z × Q is a set of weighted edges. For q ∈ Q , we let qE = {(q, w, q′) ∈ E | w ∈ Z, q′ ∈ Q }, which we assume is non-empty
for any q ∈ Q . A one-player arena is a two-player arena where Q 2 = ∅.

Consider a state q0 ∈ Q . A finite path in an arena G from an initial state q0 is a finite sequence of edges π = (ei)0≤i<n
such that for every 0 ≤ i < n − 1, writing ei = (qi, wi, q′

i), it holds q′
i = qi+1. Fix a path π = (ei)0≤i<n . Using the notations 

above, we write |π | for the size n of π , π̂i for the i + 1-st state qi of π (with the convention that qn = q′
n−1), and 

first(π) = π̂0 for its first state and last(π) = π̂n for its last state. The empty path is a special finite path from q0; its length 
is zero, and q0 is both its first and last state. Given two finite paths π = (ei)0≤i<n and π ′ = (e′

j)0≤ j<n′ such that last(π) =
first(π ′), the concatenation π · π ′ is the finite path ( fk)0≤k<n+n′ such that fk = ek for all k ∈ [0; n − 1] and fk = e′

k−n for all 
k ∈ [n; n + n′ − 1]. For 0 ≤ k ≤ n, the k-th prefix of π is the finite path π<k = (ei)0≤i<k . We write FPaths(G, q0) for the set 
of finite paths in G issued from q0 (we may omit G when it is clear from the context). We define analogously Paths(G, q0)

for the set of infinite paths from q0.
A strategy for Player 1 (resp. Player 2) from q0 is a function σ : FPaths(q0) → E associating with any finite path π

with last(π) ∈ Q 1 (resp. last(π) ∈ Q 2) an edge originating from last(π). A strategy is said memoryless when σ(π) = σ(π ′)
whenever last(π) = last(π ′). A finite path π = (ei)0≤i<n conforms to a strategy σ of Player 1 (resp. of Player 2) from q0
if first(π) = q0 and for every 0 ≤ k < n, either ek = σ(π<k), or last(π<k) ∈ Q 2 (resp. last(π<k) ∈ Q 1). This is extended to 
infinite paths in the natural way. Given a strategy σ of Player 1 (resp. of Player 2) from q0, the outcomes of σ is the set of 
all (finite or infinite) paths π issued from q0 that conform to σ .
2
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A game is a triple (G, q0, O ) where G is a two-player arena, q0 is an initial state in Q , and O  ⊆ Paths(G, q0) is a set 
of infinite paths, also called objective (for Player 1). A strategy for Player 1 from q0 is winning in (G, q0, O ) if its infinite 
outcomes all belong to O .

Given a set R ⊆ Q of states, the reachability objective defined by R is the set of all paths containing some state in R ,
while the safety objective defined by R is the set of all infinite paths never visiting any state in R . In this paper, we also 
focus on energy objectives [8,2], which we now define.

Definition 2. Fix a finite-state two-player arena G = (Q 1, Q 2, E), and an extra state qerr /∈ Q 1 ∪ Q 2. Let L ∈ Z. The L-energy
arena associated with G is the infinite-state arena GL = (C1, C2, T ) where C1 = {qerr} ∪ Q 1 ×[L; +∞) and C2 = Q 2 ×[L; +∞)

are sets of configurations, and T ⊆ C1 ×Z × C2 is such that

• for any (q, l) and (q′, l′) in Q × [L; +∞) and any w ∈Z, we have ((q, l), w, (q′, l′)) ∈ T if, and only if, (q, w, q′) ∈ E and 
l′ = l + w ≥ L; we also impose a loop (qerr, 0, qerr) ∈ T .

• for any (q, l) ∈ Q × [L; +∞), we have ((q, l), w, qerr) ∈ T if, and only if, there is a transition (q, w, q′) ∈ E such that 
l + w < L

Similarly, given L ∈ Z and U ∈ Z, the LU-energy arena associated with G is the finite-state arena GLU = (C1, C2, T ) where 
C1 = (Q 1 × [L; U ]) ∪ {qerr} and C2 = Q 2 × [L; U ], and T ⊆ C1 ×Z × C2 is such that

• for any (q, l) and (q′, l′) in Q × [L; U ] and any w ∈ Z, we have ((q, l), w, (q′, l′)) ∈ T if, and only if, (q, w, q′) ∈ E and 
l′ = l + w ∈ [L; U ]; we also impose a loop (qerr, 0, qerr) ∈ T .

• for any (q, l) ∈ Q × [L; U ], we have ((q, l), w, qerr) ∈ T if, and only if, there is a transition (q, w, q′) ∈ E such that 
l + w < L or l + w > U ;

Finally, given L ∈ Z and W ∈ Z, the LW-energy arena associated with G is the finite-state arena GLW = (C1, C2, T ) where 
C1 = {qerr} ∪ Q 1 × [L; W ] and C2 = Q 2 × [L; W ], and T ⊆ C1 ×Z × C2 is such that

• for any (q, l) and (q′, l′) in Q × [L; W ] and any w ∈ Z, we have ((q, l), w, (q′, l′)) ∈ T if, and only if, (q, w, q′) ∈ E and 
l′ = min(W , l + w) ≥ L; we also impose a loop (qerr, 0, qerr) ∈ T .

• for any (q, l) ∈ Q × [L; W ], we have ((q, l), w, qerr) ∈ T if, and only if, there is a transition (q, w, q′) ∈ E such that 
l + w < L;

Arenas GL , GLU , and GLW will be called expanded arenas in the rest of the paper. An L-run (resp. LU-run, LW-run) ρ in G
from q with initial energy level l is a path in GL (resp GLU , GLW) from (q, l) never visiting qerr . With such a run ρ = (ti)i
in G , writing ti = ((qi, li), wi, (q′

i, l
′
i)), we associate the path π = (ei)i such that ei = (qi, wi, q′

i). We define ρ̂i = (qi, li),
corresponding to the i-th configuration along ρ , and ρ̃i = li , which we name the energy level in that configuration.

Similarly, a path π is said L-feasible (resp. LU-feasible, LW-feasible) from initial energy level L if there exists an L-run 
(resp. LU-run, LW-run) from (first(π), L) whose associated path is π . Notice that if such a run exists, it is unique (because 
paths are defined as sequences of transitions).

The L-energy (resp. LU-energy, LW-energy) objective is the set of infinite paths that are L-feasible (resp. LU-feasible,
LW-feasible) (from initial energy level L). Similarly, given a target set R ⊆ Q , the L-energy- (resp. LU-energy-, LW-energy-)
reachability objective is the set of L-feasible (resp. LU-feasible, LW-feasible) paths visiting R .

Remark 3. Taking L as the initial energy level results in no loss of generality, since any energy level can be obtained by
adding an initial transition from (q0, L).

In many cases, strong upper bounds are too strict, as many systems do not break as soon as their maximal energy level 
is reached. Imposing a weak upper bound is a way to relax these constraints. We introduce another way to relax energy
constraints, by allowing for (limited) violations of the upper bound: given two strict bounds L and U in Z, a soft upper
bound S ∈ Z with L ≤ S ≤ U , and an LU-run ρ , the set of violations along ρ is the set V(ρ) = {i ∈ [0; |ρ|] | ρ̃i > S} of 
positions along ρ where the energy level exceeds the soft upper bound S . There are many ways to quantify violations along 
a run. We consider three of them in this paper, namely the total number of violations, the maximal number of consecutive 
violations, and the sum of the violations. We thus define the following three quantities: #V(ρ) = |V(ρ)|, #V(ρ) = max{i −
j + 1 | ∀k ∈ [i, j]. k ∈ V(ρ)}, and �V(ρ) = ∑

i∈V(ρ)(ρ̃i − S).

Fig. 1 is an arena for an LSU#-energy game, and Fig. 2 shows the evolution of #V along a winning run in this arena. One 
can notice that with a strong upper bound of 3, state qt would not be reachable. On the other hand, if the strong upper
bound is set to U = 6, and the soft upper bound is set to S = 3, then there exists a run from q0 to qt , but that requires 3
violations of S , and a total amount of violations of 6.

Given three values L ≤ S ≤ U , and a threshold V ∈ N, the LSU#-energy (resp. LSU#-energy, LSU�-energy) objective is 
the set of LU-feasible infinite paths π such that, along their associated runs ρ from (q0, L), the number #V(ρ) of violations 
3
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Fig. 1. An arena for a LSU#-energy reachability game.

Fig. 2. Energy level and #V along a winning run in a LSU#-energy reachability game.

Table 1
Summary of our results: Reachability.

1 player 2 players

L-energy in PTIME (Theorem 4, [9]) in NP ∩ coNP (Theorem 4, [9])
LU-energy PSPACE-c. (Theorem 7) EXPTIME-c. (Theorem 7)
LW-energy in PTIME (Theorem 25) in coNP (Coro. 29)
LSU�-energy PSPACE-c. (Theorem 30) EXPTIME-c. (Theorem 30)

Table 2
Summary of our results: (weak) upper bound existence.

Reachability Infinite runs

1 player 2 players 1 player 2 players

LU-energy in PTIME in NP ∩ coNP in NP in 2-EXPTIME
(Given L, ∃U ?) (Proposition 32) (Proposition 32) (Theorem 33) ([23])
LW-energy in PTIME in NP ∩ coNP in PTIME in 2-EXPTIME
(Given L, ∃W ?) (Proposition 32) (Proposition 32) (Theorem 34) ([23])
LSU�-energy PSPACE-c EXPTIME-c PSPACE-c EXPTIME-c
(Given L, S, V ,∃U ) (Remark 31) (Remark 31) (Remark 31) (Remark 31)

(resp. maximal number of consecutive violations #V(ρ), sum �V(ρ) of violations) of the soft upper bound S is at most V .
Similarly, for a set of states R , the LSU#-energy-reachability (resp. LSU#-energy-reachability, LSU�-energy-reachability)
objective is the set of LU-feasible paths π reaching R such that along their associated run from (q0, L), the number #V(ρ)

of violations (resp. maximal number of consecutive violations #V(ρ), sum �V(ρ) of violations) of the soft upper bound S
is at most V .

We study the complexity of deciding the existence of a winning strategy for the objectives defined above, in both the 
one- and two-player settings. In addition, given L, we address the bound-existence problem, which asks to decide if there 
exists an upper bound U ∈ Z (resp, a weak upper bound W ∈ Z) for which Player 1 wins the LU-energy (resp. LW-energy,
LSU�-energy) game. Tables 1 and 2 summarize known results, and the results obtained in this paper (where LSU�-energy
gathers all three energy constraints with violations).

3. Energy reachability games with strict bounds

In this section, we focus on the L-energy-reachability and LU-energy-reachability problems. We first prove that L-energy-
reachability problems are inter-reducible with L-energy problems, which entails:

Theorem 4. Two-player L-energy-reachability games are decidable in NP ∩ coNP. The one-player version is in PTIME, more precisely 
in time O (|Q | · |E|).
4
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Fig. 3. Schema of the reduction from L-energy to L-energy-reachability objectives.

Remark 5. Notice that these results are not a direct consequence of the results of [7] about energy parity games: that paper
focuses on the existence of an initial energy level for which Player 1 has a winning strategy with energy-parity objectives 
(which encompass our energy-reachability objectives). When the answer is positive, one can compute the minimal initial 
energy level for which a winning strategy exists, but the (deterministic) algorithm runs in exponential time.

Remark 6. These results were already proven in [9]: for one-player arenas, the authors develop a PTIME algorithm, while 
they prove LOGSPACE-equivalence with L-energy games for the two-player setting (the result then follows from [2]). Our
proof uses similar arguments as in the latter proof, but with a uniform, full and direct reduction back and forth both for
the one and two-player cases.

Proof. We prove that L-energy-reachability and L-energy games are interreducible. The theorem then follows from the 
results of [2]: solving one-player L-energy games amounts to finding positive lassos in an arena, which can be done using 
an adaptation of the Bellman-Ford algorithm, running in time O (|Q | · |E|).

First consider a two-player arena G = (Q 1, Q 2, E), an initial state q0, and an L-energy objective. We define a new
arena G ′ = (Q 1 ∪ Q c ∪ {qt}, Q 2, E ′) (assuming qt /∈ Q ) where Q c = {qc | q ∈ Q } is a copy of all the vertices of G (see 
Fig. 3). Note that, qc is always a Player 1 vertex; intuitively, states in Q c are used to allow Player 1 to stop the game and 
reach the target state qt , if enough energy has been stored. The set of transitions E ′ is obtained from E as follows (where 
the (positive) rational1 value of ε will be fixed later):

• for each (q, w, q′) ∈ E , there is a transition (q, w + ε, q′
c) and (q′

c, 0, q′) in E ′;
• for each qc ∈ Q c , there is a transition (qc, −δ, qt) in E ′ , where

δ = 1 + ∑
(q,w,q′)∈E |w|;

• finally, E ′ contains an edge (qt , 0, qt).

We claim that Player 1 has a winning strategy from q0 for the L-energy-reachability objective in G ′ if, and only if, she 
has a winning strategy from q0 for the L-energy objective in G .

First assume that Player 1 has a winning strategy σ in G for the L-energy objective; then we can assume that this 
strategy is memoryless [2]; we define the strategy σ ′ as follows: for any state q of G , letting q′ = σ(q), we define σ ′(π ·q) =
q′

c , and

σ ′(π · q · q′
c) =

{
q′ if |π | ≤ δ

2ε − 1
qt otherwise.

Obviously, any outcome μ′ of σ ′ from q0 reaches qt . First note that, by construction of σ ′ , the prefix ν ′ of μ′ just before 
reaching qt has odd length, say 2n − 1. Also note that it corresponds to an outcome ν of σ in G of length n. Since σ is 
assumed winning, ν must be L-feasible; moreover, we have ν̃ ′

2i = ν̃ ′
2i−1 = ν̃i + i · ε for all 0 ≤ i < n. Now, ν̃i ≥ L for all i,

since ν is an outcome of σ , so that also ν̃ ′
i ≥ L for all i. Moreover, |ν ′| > δ/2ε − 1, which implies that |ν| > δ/ε, so that 

ν̃ ′
2n−1 ≥ L + δ, and μ̃′

2n ≥ L. It follows that σ ′ is winning in G ′ for the L-energy-reachability objective.

Conversely, assume that Player 1 wins the L-energy-reachability game G ′ , and write σ ′ for a winning strategy in G ′
from q0. We may assume that no negative cycle occurs along any outcome of σ ′: indeed, consider the (finite) execution tree 
of σ ′ , and assume that it involves a negative cycle starting and ending at some state q; then there must exists a subtree 
rooted at q which contains no other occurrences of q; by redefining σ ′ so as to play as in this subtree after any occurrence 
of q, we remove all occurrences of our negative cycle, while preserving reachability of qt and still satisfying the energy
constraint (since removing negative cycles increases the energy level).

Now, take any outcome ρ ′ of σ ′ from q0, it must eventually reach qt . First note that, any prefix of ρ ′ is of the form 
q0q1

cq1 . . .qt . Hence, if we take any prefix π ′ of ρ ′ before reaching qt and drop the alternate vertices, we get a corresponding 

1 Our definition of arenas do not allow for rational weights, but by scaling up all constants (including the energy bounds) we get an equivalent instance 
of our problem with only integer bounds.
5
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Fig. 4. Schema of the reduction from L-energy-reachability to L-energy objectives.

path in G . Now, as ρ ′ eventually reaches qt and since the edge leading to qt has weight −δ, a positive cycle must have been 
visited along ρ ′ in G ′ . From σ ′ , we can then build a strategy σ that repeats the first positive cycle visited (after dropping 
the alternate vertices). Formally, σ(π.q) = q′ if σ ′(π ′.q) = q′

c where π is obtained by dropping alternate vertices from π ′
and π ′ contains no positive cycle. When π is a run of the form π = ρ1.β1 . . . βk−1.ρk , where each βi is a positive cycle, we 
take σ(ρ1.β1) = σ(ρ1). The resulting strategy σ then never takes the edge to qt , since it only plays moves returned by σ ′
along outcomes that do not contain positive cycles. Moreover, all simple cycles generated by σ in G ′ are positive cycles;
by taking ε < 1

|Q |+1 , these cycles still are positive cycles in G , so that σ is winning in G for the L-energy objective.

We now prove the converse reduction, which relies on similar ideas: we consider a two-player arena G = (Q 1, Q 2, E),
an initial state q0, and an L-energy-reachability objective; we assume without loss of generality that there is a unique target 
state qt , and write Attr1(qt) for the Player 1-attractor of qt in G . We build (in polynomial time) a two-player arena G ′ =
(Q ′

1, Q
′
2, E

′) from G as follows:

• Q ′
1 = (Q 1 ∩ Attr1(qt)) ∪ {q′

0, qs} and Q ′
2 = Q 2. State q′

0 will serve as the new initial state, and qs is a sink state that 
guarantees existence of an infinite run;

• letting E0 = {(q, w − ε, q′) | (q, w, q′) ∈ E and q ∈ Q ′
1 ∪ Q ′

2 \ {qt}} ∪ {(qt , 0, qt), (qs, −1, qs)} ∪ {(q′
0, 1, q) | q ∈ {q0} ∩

Attr1(qt)}, we define E ′ = E0 ∪ {(q, 0, qs) | qE0 = ∅}. This way, all states have an outgoing edge, possibly to the sink
state qs if no other transition exists. As for the first reduction, the exact value of ε will be fixed later.

We prove that Player 1 wins the L-energy-reachability game in G from q0 if, and only if, she wins the L-energy game 
in G ′ from q′

0 (Fig. 4).
For the first direction, if Player 1 has a winning strategy to reach qt from q0 in G while maintaining the energy level 

above L, then she has such a strategy σ along whose outcomes the energy level is bounded above by L + 2δ (where δ =
1 + ∑

(q,w,q′)∈E |w|): indeed, if energy level L + δ is reached along some outcome, then Player 1 can achieve the reachability
objective by playing her memoryless attractor strategy. Choosing the attractor strategy ensures reaching qt , and will decrease 
the energy level by at most δ along any outcome. Similarly, following the attractor strategy can increase the energy level 
by no more than δ. Strategy σ can be chosen to contain no negative cycles, so we can bound the length of the outcomes 
by (δ + 1) · |Q |. Now, by taking ε < 1

(δ+1)·|Q | , we can mimic strategy σ in G ′: all outcomes only visit states in the attractor
of qt , and reach qt in at most (δ + 1) · |Q | + 1 steps (the extra step is the transition from q′

0 to q0). The ε difference in 
the weights is compensated by the initial credit 1 harvested when moving from q′

0 to q0, so that all outcomes satisfy the
L-energy constraint.

Conversely, if Player 1 has a winning strategy σ ′ from q′
0 in G ′ , then we can assume that this strategy is memoryless [2].

Some of the outcomes may reach qt , some may not. Since σ ′ is memoryless, it cannot take any negative cycle, as this would 
yield an outcome whose energy level tends to −∞. Hence it may only take nonnegative cycles in G ′ , which correspond to 
positive cycles in G (since ε > 0). As a consequence, when mimicking σ ′ in G , for those outcomes that do not reach qt ,
the energy level will grow arbitrarily high; when it exceeds δ, Player 1 can play her attractor-strategy to reach qt . This 
concludes our proof for two-player games. �

Similarly, for LU-energy-reachability objectives, we prove the same complexities as with classical LU-energy objectives:

Theorem 7. One-player LU-energy-reachability games are PSPACE-complete. Two-player LU-energy-reachability games are
EXPTIME-complete.

Proof. Membership in PSPACE and EXPTIME is proved by considering the expanded game GLU , in which energy is repre-
sented explicitly in states: it can be used to check reachability of a target state for both the one- and the two-player cases.
Recall that GLU is of exponential size, and that reachability in a graph is in NLOGSPACE. Hence, for the one-player case, a 
strategy for an LU-energy-reachability game can be found on-the-fly in PSPACE, without explicitly building the expanded 
arena. For the two-player case, recall that reachability in two-player games is in PTIME w.r.t. the size of the arena (by build-
ing an attractor for the target states). We solve reachability in the exponential-size arena GLU , which results in an EXPTIME
algorithm.
6
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For both the one- and the two-player settings, the hardness proofs for LU-energy objectives are readily adapted to
LU-energy-reachability objectives, since they are based on reachability-like problems (reachability in bounded one-counter
automata [17] and countdown games [24], respectively).

Let us first show PSPACE-hardness of the LU-energy-reachability games for the one-player setting. We reduce the 
question of reachability in bounded one-counter automata to existence of a winning strategy in one-player LU-energy-
reachability games. A bounded one-counter automaton is a machine M = (Q , q0, q f , δM) with one counter c that stores 
values between 0 and an integer upper bound b. The elements of the machine are its set of states Q , an initial state q0,
and a target state q f . Transitions in δM are tuples of the form (q, p, g1, g2, q′) where q and q′ are states in Q , p ∈ [−b, b] is 
an increment or decrement of the counter, and g1, g2 ∈ [0, b] are lower- and upper bounds on the value of c. The semantics 
of bounded one-counter automata is as follows: the execution starts from configuration (q0, 0). A transition (q, p, g1, g2, q′)
can be fired from some configuration (q, c) if g1 ≤ c ≤ g2; it leads to configuration (q′, c + p). The reachability question asks 
whether, starting from configuration (q0, 0), the one-counter automaton can reach state q f .

We build a one-player LU-energy-reachability game with arena G M with set of states Q ′ = Q ∪ {qt,1, qt,2, qt,3, qt,4 | ∃t =
(q, p, g1, g2, q′) ∈ δM} and bounds [0, U ] with U = b. The energy level in this game will simulate the value of the counter.
For every transition t = (q, p, g1, g2, q′) ∈ δM , we create five transitions:

• two transitions (q, −g1, qt,1) and (qt,1, g1, qt,2) to test that c ≥ g1;
• two transitions (qt,2, U − g2, qt,3) and (qt,3, g2 − U , qt,4) to test that c ≤ g2;
• one transition (qt,4, p, q′) to move to the next state q′ with an update of the energy level.

Notice that the intermediate states have only one incoming- and one outgoing transitions; we write (q, v) [g1,g2],p=====⇒ (q′, v + p)

for the sequence

(q, v)
−g1−−→ (qt,1, v − g1)

g1−→ (qt,2, v)
U−g2−−−→ (qt,3, v + U − g2)

g2−U−−−→ (qt,4, v)
p−→ (q′, v + p),

provided that all intermediary configurations fulfill the LU-energy constraint.
We start the LU-energy-reachability game on G M with energy level 0. Assume that there exists a winning run ρ from q0

to q f of the form

ρ = (q0,0)
[g1,g2],p=====⇒ (q′, p) . . . (qi, vi)

[gi,1,gi,2],pi=======⇒ (qi+1, vi + pi) . . . (qn−1, vn−1)
[gn−1,1,gn−1,2],pn−1===========⇒ (q f , vn).

As ρ is a winning run for the LU-energy-reachability game with bounds [0, U = b], we have that for every i, vi − gi,1 ≥ 0,
so vi ≥ gi,1 ≥ 0. Similarly, we have vi + b − gi,2 ≤ b, so vi ≤ gi,2 ≤ b. The bounded character of LU-energy-reachability game 
guarantees that q f is reached with a final energy level vn ∈ [0, U ]. Now, if an energy level is such that vi ≤ gi,1 but 

vi ≥ gi,2, then one can play moves (qi, vi) 
−gi,1−→ (qq′,1, vi − gi,1) 

g1−→ (qq′,2, vi), but the system will get stuck in configuration 
(qq′,2, vi). So there exists a winning run of M starting from (q0, 0) and reaching q f iff there exists a winning run for the 
LU game. Notice that G M has a size linear in the size of M . As one-counter games are PSPACE-complete [17], this shows 
PSPACE-hardness of one-player LU-energy-reachability games.

We can now show EXPTIME-hardness of two-player LU-energy-reachability games. We can show that existence of a win-
ning strategy in countdown games can be brought back to a LU-energy-reachability game. A countdown game is a pair (S, E)

where S is a set of states, and E ⊆ S ×N × S is a set of edges. The game starts from a configuration (s0, c0), where s0 is an 
initial state and c0 the value of the unique counter in the game. Then, for every turn of the game, from configuration (s, c),
Player 1 chooses a value d such that 0 < d ≤ c, and such that there exists at least one transition of the form (s, d, s′) ∈ E .
This choice is immediately followed by a choice of Player 2 to move to a state s′′ such that (s, d, s′′) ∈ E . The configuration 
reached after this decision becomes (s′′, c − d). A play is winning for Player 1 if it reaches a configuration of the form (s, 0).
On the other hand, Player 2 wins a play if it ends in a configuration (s, c) that is deadlocked, i.e. such that c < d for every
(s, d, s′) ∈ E . The problem whether Player 1 has a winning strategy in a countdown game is EXPTIME-complete, as shown 
in [24].

We recast the winning strategy question in LU-energy-reachability games the following way. We build an arena G =
(Q 1 ∪ Q 2, ELU). For every state s ∈ S , we create a state qs ∈ Q 1. Further, we add two particular states qt̂ and qt to Q 1. Then,
for every edge of the form (s, d, s′), we create a state qs,d in Q 2. For every edge (s, d, s′), we create an edge (qs, −d, qs,d)

and an edge (qs,d, 0, q′
s) in ELU . Further, we create an edge (qs, 0, qt̂) from every state qs ∈ Q 1, and an edge (qt̂ , +U , qt).

We set as initial value of the arena c0, we take as lower bound L = 0 and as upper bound U = c0. A winning play in arena G
is a play ρ of the form

(qs0 , c0)
−d1−→ (qs0,d1 , c0)

0−→ (qs1 , c1)
−d2−→ . . . (qsk , ck)

0−→ (qt̂, ck)
U−→ (qt, ck + U ).

This play is winning if, and only if, all weights c0, c1, ..., ck and ck + U belong to [0, U ], hence if, and only if, ck = 0.

Then, ρ is winning if, and only if, (s0, c0) 
−d1−→ (s1, c1) . . . (sk, ck = 0) is winning. So, if Player 1 has a strategy to win the

LU-energy-reachability game starting from energy level c0, then the countdown game is winning for Player 1 starting from 
configuration (s0, c0). �
7
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Fig. 5. A one-player arena with LW-energy-reachability objective.

4. Energy reachability games with weak upper bound

Finding a strategy that satisfies an LW-energy constraint along an infinite run is conceptually easy: it suffices to find a 
cycle that can be iterated once with a positive effect. It follows that memoryless strategies are enough, and the LW-energy
problem was shown to be in PTIME for one-player arenas, and in NP ∩ coNP for two-player arenas [2].

The situation is different when we have a reachability condition: players may have to keep track of the exact energy level 
in order to find their way to the target state. Obviously, considering the expanded arena GLW , we easily get exponential-
time algorithms for LW-energy-reachability objectives. However, as proved below, in the one-player case, a PTIME algorithm 
exists.

Example 8. Consider the one-player arena of Fig. 5, where the lower bound is L = 0, the weak-upper bound is W = 5,
and the target state is qt . Starting from q0 with initial credit 0, we first have to move to q1, and then iterate the positive 
cycle β1 = (q1, +2, q2) · (q2, −2, q3) · (q3, +1, q1) three times, ending up in q1 with energy level 3. We then take the cycle 
β2 = (q1, +2, q2) · (q2, −5, q4) · (q4, +5, q1), which raises the energy level to 5 when we come back to q1, so that we can 
reach qt . Notice that β1 has to be repeated three times before taking cycle β2, and that repeating β1 more than three times 
maintains the energy level at 4, which is not sufficient to reach qt . This suggests that Player 1 needs memory and cannot 
rely on a single cycle to win LW-energy-reachability games.

This example shows that winning strategies for Player 1 may have to monitor the exact energy level all along the com-
putation, thereby requiring exponential memory (assuming that all constants are encoded in binary; with unary encoding,
the expanded game GLW would have polynomial size and directly give a polynomial-time algorithm).

Proposition 9. In LW-energy-reachability games, exponential memory may be necessary for Player 1 (assuming binary-encoded con-
stants).

Notice that this does not prevent from having PTIME algorithms: the strategy in Example 8 is not very involved, but it 
depends on the energy level (up to W ).

4.1. One-player case

In this section, we focus on the one-player case. In order to get a polynomial-time algorithm, we begin with analyz-
ing cycles in the graph, and prove that a path witnessing LW-energy reachability can have a special form, which can be 
represented compactly in polynomial size. We then characterize interesting cycles to iterate, and show how to find them 
efficiently.

4.1.1. Reshaping winning paths
In this section, we prove the following result:

Proposition 10. Let π be a finite path in a one-player arena G. There exists a path π ′ of the form α1 · ϕn1
1 · α2 · ϕn2

2 · · ·ϕnk
k · αk+1 ,

where for all j, ϕ j are distinct cycles of length less than |Q |, α j are acyclic paths, and n j are integers, such that if (q, u) π−→LW (q′, u′),

then also (q, u) π ′−→LW (q′, u′′) with u′′ ≥ u′ .

Proposition 10 can actually be reinforced by requiring that n j = W − L + 1 (or any larger value) for all j. The proof of 
the result goes through a series of simple lemmas. Our first lemma states that starting with higher energy level can only be 
beneficial:

Lemma 11. Let π be a finite path in a one-player arena G. If (q, u) π−→LW (q′, u′), then for any v ≥ u, (q, v) π−→LW (q′, v ′) for some v ′ ≥
u′ .
8
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Proof. Write π = (ei)0≤i<n , with ei = (qi, pi, q′
i) for each i. The sequence defined as

u0 = u ui+1 = min(W , ui + pi)

is the sequence of energy levels along the run (q, u) π−→LW (q′, u′), so that un = u′ . For v ≥ u, letting

v0 = v vi+1 = min(W , vi + pi),

we easily prove by induction that for all i, ui ≤ vi ≤ W , which entails that (q, v) π−→LW (q′, v ′) with v ′ = vn ≥ un = u′ . �
Notice that, even if we add condition u′ > u in the hypotheses of Lemma 11, it need not be the case that v ′ > v . In other

terms, a sequence of transitions may have a positive effect on the energy level from some configuration, and a negative 
effect from some other configuration, due to the weak upper bound. Below, we prove a series of results related to this issue,
and that will be useful for the rest of the proof. First, the effect of a given path (i.e., the net amount of energy that is 
harvested) decreases when the initial energy level increases:

Lemma 12. Let π be a finite path in a one-player arena G, and consider two LW-runs (q, u) π−→LW (q′, u′) and (q, v) π−→LW (q′, v ′) with 
u ≤ v. Then u′ − u ≥ v ′ − v, and if the inequality is strict, then the energy level along the run (q, v) π−→LW (q′, v ′) must have hit W .

Proof. The first statement is proven by induction: we again write π = (ei)0≤i<n , with ei = (qi, pi, q′
i) for each i, and

u0 = u ui+1 = min(W , ui + pi)

v0 = v vi+1 = min(W , vi + pi).

Then ui+1 −ui = min(W −ui, pi) and vi+1 − vi = min(W − vi, pi). Since ui ≤ vi for all i, we also have W −ui ≥ W − vi , and 
ui+1 −ui ≥ vi+1 − vi . By summing up these inequalities, we get ui+1 −u0 ≥ vi+1 − v0. Now, as long as W − vi ≥ pi (then also 
W − ui ≥ pi ), the inequalities above are equalities. It follows that if the inequality is strict, then the run (q, v) π−→LW (q′, v ′)
must have hit W . �

The next lemma is more precise about the effect of following a path when starting from the maximal energy level W :

Lemma 13. Let π be a finite path in a one-player arena G, for which there is an LW-run (q, u) π−→LW (q′, u′). If u′ is the maximal energy 
level along that run, then (q, W ) π−→LW (q′, W ); if u is the maximal energy level along the run above, then (q, W ) π−→LW (q′, W +u′ −u).

Proof. Write π = (ei)0≤i<n , with ei = (qi, pi, q′
i) for each i. If u′ is the maximal energy level, then for all i, we have ∑n−1

j=i p j ≥ 0. Now, define

v0 = W vi+1 = min(W , vi + pi).

If vn < W , then by induction we also have vi < W for all i, contradicting the fact that v0 = W . This proves our first result.
Similarly, if u is the maximal energy level, then for all i, we have 

∑i
j=0 p j ≤ 0. Then for all i, vi+1 = vi + pi ≤ W , so 

that vn − v0 = u′ − u. Our second result follows. �
From Lemma 11, it follows that any run witnessing LW-energy reachability can be assumed to contain no cycles with 

nonpositive effect. Formally:

Lemma 14. Let π be a finite path in a one-player arena G. If (q, u) π−→LW (q′, u′) and π can be decomposed as π1 · π2 · π3 in such a 
way that (q, u) π1−→LW (s, v) π2−→LW (s, v ′) π3−→LW (q′, u′) with v ′ ≤ v, then (q, u) 

π1·π3−−−→LW (q′, u′′) with u′′ ≥ u′ .

Proof. Since (s, v ′) π3−→LW (q′, u′) and v ′ ≤ v , by Lemma 11 we also have (s, v) 
π3−→LW (q′, u′′) for some u′′ ≥ u′ . The result 

follows. �
The following lemmas show that several occurrences of a cycle having positive effect along a path can be gathered 

together. This will be useful to prove the existence of a short path witnessing LW-energy reachability.

Lemma 15. Let π be a finite path in a one-player arena G. If (q, u) π−→LW (q′, u′) with u′ > u and (q, w) π−→LW (q′, w ′) with w ′ > w,

then for any u ≤ v ≤ w, it holds that (q, v) π−→LW (q′, v ′) with v ′ > v.
9
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Proof. Using Lemma 11, we immediately have (q, v) π−→LW (q′, v ′). As in the previous proof, we define sequences

u0 = u ui+1 = min(W , ui + pi)

v0 = v vi+1 = min(W , vi + pi)

w0 = w wi+1 = min(W , wi + pi).

We still have ui ≤ vi ≤ wi for all i. Moreover, if v j < W for all j ≤ i, then vi − ui = v − u. As a consequence, if v ′ ≤ v , then 
it must be the case that v j = W for some j; but then w j = v j , since v j ≤ w j ≤ W . It follows that wk = vk for all k ≥ j, so 
at the end of π we have w ′ = v ′ . Assuming v ′ ≤ v raises a contradiction since we have v ′ = w ′ > w ≥ v . Hence v ′ > v . �
Lemma 16. Let π be a cycle on some state q in a one-player arena G, such that (q, u) π−→LW (q, v) for some u ≤ v. Then 

(q, u) π W −L+1−−−−−→LW (q, v ′) for some v ′ ≥ v, and (q, v ′) π−→LW (q, v ′).

Proof. The case where u = v is trivial. We assume u < v . Applying Lemma 11 inductively, we get that the cycle can be 
iterated arbitrarily many times; this also proves that the sequence of energy levels reached at the end of each iteration is 
non-decreasing.

Now, assume that (q, v ′) π−→LW (q, v ′′) for some v ′′ �= v ′ . Then v ′′ > v ′ . Lemma 15 then entails that the sequence of energy
levels reached at the end of each iteration is increasing. Since the loop has been iterated W − L + 1 times, the energy level 
in v ′ would exceed W , which is impossible. This proves our result. �

We now prove Proposition 10. Fix a path π in G , and assume that some cycle ϕ appears (at least) twice along π (if not,
then π is already in the desired form): the first time from some configuration (q, v) to some configuration (q, v ′), and 
the second time from (q, w) to (q, w ′). First, we may assume that ϕ has length at most |Q |, since otherwise we can take 
an inner subcycle. We may also assume that w > v ′ , as otherwise we can apply Lemma 14 to get rid of the resulting 
nonpositive cycle between (q, v ′) and (q, w). For the same reason we may assume v ′ > v and w ′ > w . As a consequence, by
Lemmas 15 and 11, by repeatedly iterating ϕ from (q, v), we eventually reach some configuration (q, x) with x ≥ w ′ , from 
which we can follow the suffix of π after the second occurrence of ϕ . It follows that all occurrences of ϕ along π can be 
grouped together, and we can restrict our attention to runs of the form α1 · ϕn1

1 · α2 · ϕn2
2 · · ·ϕnk

k · αk+1 where the cycles ϕ j
are distinct, and have size at most |Q |, and the finite runs α j are acyclic. Notice that each occurrence of any cycle ϕ j can 
be assumed to have positive effect, and by Lemma 16, we may take n j ≥ W − L + 1 for all j.

4.1.2. Characterizing interesting cycles
While Proposition 10 allows us to only consider paths of a special form, it does not provide short witnesses, since there 

may be exponentially many cycles of length less than or equal to |Q |, and the witnessing run may need to iterate several 
cycles looping on the same state (see Example 8). In order to circumvent this problem, we have to show that all cycles need 
not be considered, and that one can compute the “useful” cycles efficiently. For this, we introduce universal cycles, which 
are cycles that can be iterated from any initial energy level (above L).

Definition 17. Let G be a one-player arena, and q be a state of G . Let L be a lower bound and W ≥ L be a weak-upper

bound. A universal cycle on q in G is a cycle ϕ of length at most |Q | with first(ϕ) = last(ϕ) = q such that (q, L) 
ϕ−→LW (q, vϕ,L)

for some vϕ,L (i.e., the energy level never drops below the lower bound L when following ϕ with initial energy level L).
Notice that vϕ,L ≥ L; a universal cycle is positive if vϕ,L > L.

When a cycle ϕ of length at most |Q | is iterated n times, then some universal cycle σ is also iterated n − 1 times 
(by shifting the start of cycle ϕ to a state with minimal energy level along ϕ; see Fig. 6). Combining this remark with 
Proposition 10, iterating only universal cycles is enough: we may now only look for runs of the form β1 · σ n1−1

1 · β2 ·
σ

n2−1
2 · · ·σ nk−1

k · βk+1 where σ j ’s are universal cycles of length at most |Q |, and β j ’s are paths (possibly containing cycles)
of size at most 2|Q | − 1.

Now, assume that some state q admits two universal cycles σ and σ ′ , and that both cycles appear along a given run π .
Write h (resp. h′) for the energy levels reached from (q, L) after iterating σ (resp. σ ′) W − L + 1 times (see Lemma 16).
We define a preorder on universal cycles of q by letting σ � σ ′ when h ≥ h′ . Then:

Lemma 18. Let σ and σ ′ be two universal cycles on some state q in a one-player arena G such that σ � σ ′ . Let h and h′ be defined as 

above (hence h ≥ h′). If (q, u) σ ′ ·π ·σ ′−−−−→LW (q, v) for some u and v and some path π , then (q, u) σ W −L+1−−−−−→LW (q, h) and h ≥ v.

Proof. That (q, u) σ W −L+1−−−−−→LW (q, h) is a direct consequence of the fact that σ is a universal cycle and of the definition of h.

The second part of the statement can be obtained by seeing that (q, u) σ ′ ·π ·σ ′·σ ′ W −L+1−−−−−−−−−−→LW (q, h′) with h′ ≥ v . Since h ≥ h′ ,
the result follows. �
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Fig. 6. Introducing universal cycles.

As a consequence, if σ � σ ′ , then any subpath path between two occurrences of σ ′ along an LW-feasible path π can be 
replaced with σ W −L , yielding a run π ′ that still satisfies the LW-energy condition (and has the same first and last states).
Generalizing this argument, each state that admits universal cycles has an optimal universal cycle of length at most |Q |,
and it is enough to iterate only this universal cycle to find a path witnessing reachability. This provides us with a small 
witness, of the form γ1 · τ W −L

1 · γ2 · τ W −L
2 · · ·τ W −L

k · γk+1 where τ j are optimal universal cycles of length at most |Q | and 
γ j are paths of length at most 2|Q | − 1. Since it suffices to consider at most one universal cycle per state, we have k ≤ |Q |.
It follows that if there is a witnessing path, there is one of size at most |Q |2 · (W − L) + (|Q | + 1) · (2|Q | − 1). From this,
we immediately derive an NP algorithm for solving LW-energy reachability for one-player arenas.

4.1.3. Efficient computation of optimal universal cycles
The rest of this section aims at obtaining a more efficient (PTIME) algorithm for solving LW-energy reachability in one-

player arenas. This mainly amounts to proving that optimal universal cycles of length at most |Q | can be computed in 
polynomial time for any given state q. For this we unwind the graph from q as a DAG of depth |Q | (pruning the subtrees 
at depth |Q |), so that it includes all cycles of length at most |Q |. We name the states of this DAG [q′, d], where q′ is the 
name of a state of the arena and d is the depth of this state in the DAG (using square brackets to avoid confusion with 
configurations (q′, l) where l is the energy level); hence, for any d < |Q |, there is a transition ([q′, d], w, [q′′, d + 1]) in the 
DAG as soon as there is a transition (q′, w, q′′) in the arena.

We then explore this DAG from its initial state [q, 0], looking for (paths corresponding to) universal cycles. Our aim is to 
keep track of all runs from [q, 0] to [q′, d] that correspond to prefixes of universal cycles starting from q. Actually, we do not 
need to keep track of those runs explicitly, and it suffices to remember, for each such run ending in [q′, d′], the following 
two values:

• the maximal energy level M that has been observed along the run so far (starting from energy level L, with weak upper
bound W );

• the difference m between the maximal energy level M and the final energy level in [q′, d]. Notice that m ≥ 0, and that 
the final energy level in [q′, d] is M − m.

If we know the pair of values (M, m) of some path from [q0, 0]) to [q′, d], we can decide if a given transition with 
weight w from [q′, d] to [q′′, d +1] can be taken (the resulting path can still be a prefix of a universal cycle if M −m + w ≥ L),
and compute how the values of M and m have to be updated: if w > m, the run will reach a new maximal energy level, and 
the new pair of values is (min(W ; M − m + w), 0); if m + L − M ≤ w ≤ m, then the transition can be taken: the new energy
level M − m + w will remain between L and M , and we update the pair of values to (M, m − w); finally, if w < m + L − M ,
the energy level would go below L, and the resulting run would not be a prefix of a universal cycle.

Example 19. Fig. 7 shows a one-player arena (in which we assume L = 0 and W = 4) and its associated DAG, whose nodes 
are labelled with pairs (M, m). Here each node has as many labels as the number of paths from the initial state of the DAG.
Labels in red correspond to non-feasible paths (when m > M at some point along the path). In the end, there are three 
universal cycles on q0 in this example.

Following these ideas, we inductively attach labels to the states of the DAG: initially, [q0, 0] is labelled with (M0 =
L, m0 = 0); then if a state [q′, d] is labelled with (M ′, m′), and if there is a transition from q′ to q′′ with weight w:

• if w > m′ , then we label [q′′, d + 1] with the pair (M ′′ = min(W ; M ′ − m′ + w), m′′ = 0);
• if m′ + L − M ′ ≤ w ≤ m′ , we label [q′′, d + 1] with (M ′′ = M ′, m′′ = m′ − w).

The following lemma makes a link between runs in the DAG and labels computed by our algorithm:

Lemma 20. Let [q, d] be a state of the DAG, and M and m be two integers such that 0 ≤ m ≤ M − L. Upon termination of this algorithm,
state [q, d] of the DAG is labelled with (M, m) if, and only if, there is an LW-run of length d from (q0, L) to (q, M − m) along which the 
energy level always remains in the interval [L, M] and equals M at some point.
11
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Fig. 7. Detecting universal cycles in a one-player arena (with upper bound W = 4).

Proof. The proof is by induction on d. The result is trivial for d = 0. Now, assume it holds for some depth d − 1, and pick a 
state [q, d]. For the first direction, if [q, d] is labelled with (M, m), then this label was added using some transition ([q′, d −
1], w, [q, d]) and some label (M ′, m′) of [q′, d −1]. By induction, there is an LW-run ρ of length d −1 from (q0, L) to (q′, M ′ −
m′) in G along which the energy level remains in the interval [L, M ′]. We consider two cases, corresponding to the two 
ways of updating the pair of values:

• if w > m′ , then we have M = min(W , M ′ −m′ + w) and m = 0. Now, the transition ([q′, d −1], w, [q, d]) in the DAG orig-
inates from a transition (q′, w, q) in G; taking this transition after ρ provides us with the run of length d from (q0, L)

to (q, M − m) along which the energy level remains in [L, M], as required;
• if m′ + L − M ′ ≤ w ≤ m′ , then M = M ′ and m = m′ − w . Again, taking transition (q′, w, q) after ρ provides us with the

LW-run we are looking for.

Conversely, if there is an LW-run ρ of length d from (q0, L) to (q, M − m) along which the energy level always remains 
in the interval [L, M], then we write ρ = ρ ′ · ((q′, l′), w, (q, M −m)), distinguishing its last transition. By induction, [q′, d −1]
must have been labelled with a pair (M ′, m′) such that l′ = M ′ − m′ and the energy level along ρ ′ remained within [L, M ′].
Now, from the existence of a transition ((q′, l′), w, (q, M − m)), we know that there is a transition ([q′,d − 1], w, [q,d]) in 
the DAG, which will generate the required label of [q, d]. �
Lemma 21. Let [q0, d] be a state of the DAG, with d > 0. Let m be a nonnegative integer such that L + m < W . Upon termination of 
this algorithm, state [q0, d] is labelled with (M, m) for some M > L + m if, and only if, there is a universal cycle ϕ on q0 of length d

such that (q0, L) 
ϕW −L

−−−→LW (q0, W − m).

Proof. First assume that [q0, d] is labelled with (M, m) for some M such that M −m > L. From Lemma 20, there is a cycle ϕ

on q0 of length d generating a run (q0, L) 
ϕ−→LW (q0, M − m) along which the energy level is within [L, M]. Then M − m ≥ L,

so that Lemma 16 applies: we then get (q0, L) 
ϕW −L

−−−→LW (q0, E) with (q0, E) 
ϕ−→LW (q0, E) and E ≥ L. Write (pi)0≤i<|ϕ| for the 

sequence of weights along ϕ . Also write ρ for the run (q0, L) 
ϕ−→LW (q0, M − m), and σ for the run (q0, E) 

ϕ−→LW (q0, E).
As L < M − m, then by Lemma 12, it must be the case that energy level W is reached along σ . Write i0 for the first 

position along ρ for which the energy level is M . Assume σ̃i0 �= W : by Lemma 11, we must have M = ρ̃i0 ≤ σ̃i0 < W .

Then for all k ≥ i0, 
∑k

l=i0
pl ≤ 0. Since σ̃i0 < W , then also σ̃k < W for all k ≥ i0. According to Lemma 12, energy level W

is reached in σ , so there exists some k0 < i0 such that σ̃k0 = W . However, as i0 is the index of the first maximal value 
in ρ , we have ρ̃k0 < M , and the energy level increases in run ρ between k0 and i0. So according to Lemma 13, we should 
have σ̃i0 = W , which raises a contradiction. Hence we proved σ̃i0 = W ; applying the second result of Lemma 13, we get 
E = W − m.

Conversely, if there is a universal cycle ϕ satisfying the conditions of the lemma, then it must have positive effect when 
run from energy level L. Let F be such that (q0, L) 

ϕ−→LW (q0, F ), and M be the maximal energy level encountered along 
the run (q0, L) 

ϕ−→LW (q0, F ). By Lemma 20, state [q0, d] is labelled with (M, m′) for some m′ ≥ 0 such that F = M − m′ .

By Lemma 16, we must have (q0, L) 
ϕW −L

−−−→LW (q0, W − m′). �
The algorithm above computes optimal universal cycles, but it still runs in exponential time (in the worst case) since 

it may generate exponentially many different labels in each state [q, d] (one per path from [q0, 0] to [q, d]). We now ex-
12
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plain how to only generate polynomially-many pairs (M, m). This is based on the following partial order on labels: we let 
(M, m) � (M ′, m′) whenever M − m ≤ M ′ − m′ and m′ ≤ m. Notice in particular that

• if M = M ′ , then (M, m) � (M ′, m′) if, and only if, m′ ≤ m;
• if m = m′ , then (M, m) � (M ′, m′) if, and only if, M ≤ M ′ .

The following lemmas entail that it suffices to store maximal labels w.r.t. �. First, these labels correspond to optimal 
universal cycles:

Lemma 22. Consider two paths π and π ′ such that first(π) = first(π ′) and last(π) = last(π ′), and with respective values (M, m)

and (M ′, m′) such that (M, m) � (M ′, m′). If π is a prefix of a universal cycle ϕ , then π ′ is a prefix of a universal cycle ϕ′ with ϕ′ � ϕ .

Proof. Let q = first(π) and q′ = last(π). We write ψ for the path such that ϕ = π · ψ (i.e., ψ is a path from q′ to q).

Then (q, L) π−→LW (q′, M − m) 
ψ−→LW (q, F ) for some F ≥ L. Also, (q, L) π ′−→LW (q′, M ′ − m′). Since M − m ≤ M ′ − m′ , we have 

(q′, M ′ − m′) ψ−→LW (q, F ′), and F ≤ F ′ . We can thus let ϕ′ = π ′ · ψ : by Lemma 11, the final energy level reached after
iterating ϕ′ is higher than or equal to the energy level reached after iterating ϕ , since m′ ≤ m. Hence ϕ′ � ϕ . �

Second, maximal labels at depth d + 1 can be computed from maximal labels at depth d. This follows from this lemma:

Lemma 23. Assume that some node [q, d] is labelled with (M0, m0) and (M1, m1) with (M0, m0) � (M1, m1), and that there is a 
transition (q, w, q′) in the arena. If (M0, m0) gives rise to a label (M ′

0, m
′
0) in [q′, d + 1] by transition (q, w, q′), then (M1, m1) gives 

rise to a label (M ′
1, m

′
1) in [q′, d + 1] by that transition, and (M ′

0, m
′
0) � (M ′

1, m
′
1).

Proof. Since (M0, m0) � (M1, m1), we have M0 − m0 ≤ M1 − m1 and m1 ≤ m0.
First assume that m0 + L − M0 ≤ w ≤ m0: (M0, m0) generates label (M ′

0 = M0, m′
0 = m0 − w) in [q′, d + 1] by transi-

tion (q, w, q′). Moreover, since M0 − m0 ≤ M1 − m1, we have m1 + L − M1 ≤ w , so that indeed (M1, m1) with give rise to a 
label in [q′, d + 1]. We consider two cases:

• if m1 + L −M1 ≤ w ≤ m1, then the label generated by (M1, m1) is (M ′
1 = M1, m′

1 = m1 − w), so that obviously (M ′
0, m

′
0) �

(M ′
1, m

′
1);

• if m1 < w , then the label is (M ′
1 = min(W , M1 − m1 + w), m′

1 = 0). Obviously, m′
1 ≤ m′

0; moreover, M ′
0 − m′

0 = M0 −
m0 + w , while M ′

1 − m′
1 = min(W , M1 − m1 + w). Since w ≤ m0 and M0 ≤ W , we have M ′

0 − m′
0 ≤ M ′

1 − m1.

Similarly, if w > m0, then also w > m1. The labels generated by (M0, m0) and (M1, m1) respectively are (M ′
0 =

min(W , M0 − m0 + w), m′
0 = 0) and (M ′

1 = min(W , M1 − m1 + w), m′
1 = 0). Again, it is easily seen that (M ′

0, m
′
0) �

(M ′
1, m

′
1). �

It remains to prove that by keeping only maximal labels, we only store a polynomial number of labels:

Lemma 24. If the algorithm labelling the DAG only keeps maximal labels (for �), then it runs in polynomial time.

Proof. We prove that, when attaching to each node [q, d] of the DAG only the maximal labels (w.r.t. �) reached for a path 
of length d ending in state q, the number of values for the first component of the different labels that appear at depth d > 0
in the DAG is at most d · |Q |. Since it only stores maximal labels, our algorithm will never associate to a state [q, d] two 
labels having the same value on their first component. So, any state at depth d will have at most d · |Q | labels.

So we prove, by induction on d, that the number of different values for the first component among the labels appearing 
at depth d > 0 is at most d · |Q |. This is true for d = 1 since the initial state (q, 0) only contains (M = 0, m = 0), and each 
transition with nonnegative weight w will create one new label (w, 0) (transitions with negative weight are not prefixes 
of universal cycles). Now, since all those labels have value 0 as their second component, each state [q, 1] in the DAG will 
be attached at most one label. Hence, the total number of labels (and the total number of different values for their first 
component) is at most |Q | at depth 1 in the DAG.

Now, assume that labels appearing at depth d > 1 are all drawn from a set of labels {(Mi, mi) | 1 ≤ i ≤ n} in which the 
number of different values of Mi is at most d · |Q |. Consider a state [q′, d], labelled with {(Mi, mi) | 1 ≤ i ≤ nq′,d} (even if it 
means reindexing the labels). Pick a transition from [q′, d] to [q′′, d + 1], with weight w . For each pair (Mi, mi) associated 
with [q′, d], it creates a new label in [q′′, d + 1], which is

(1) either (min(W ; Mi − mi + w), 0) if mi < w (maximal energy level increases);
(2) or (Mi, mi − w) if mi + L − Mi ≤ w ≤ mi (maximal energy level is unchanged).
13
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Fig. 8. An example (with 2W + 2k + 2 states) showing that more than one cycle per state can be needed.

Now, for a state [q′′, d + 1], the set of labels created by all incoming transitions can be grouped as follows:

(1’) labels having zero as their second component (which includes all labels originating from (1) above, and possibly some 
from (2)); among those, our algorithm only stores the one with maximal first component, as (Mi , 0) � (M j, 0) as soon 
as Mi ≤ M j ;

(2’) for each Mi appearing at depth d, labels having Mi as their first component; again, we only keep the one with minimal 
second component, as (M, mi) � (M, m j) when m j ≤ mi .

Last, for this state [q′′, d + 1], we keep at most one label for each distinct value among the first components Mi of labels 
appearing at depth d, and possibly one extra label with second value 0. In other terms, at depth d +1 the values that appear
as first component of labels are obtained from values at depth d, plus possibly one per state; Hence, at depth d + 1, there 
exists at most (d + 1) · |Q | labels, which completes the proof of the induction step. �

Using the algorithm above, we can compute, for each state q of the original arena, the smallest value mq for which there 
exists a universal cycle on q that, when iterated sufficiently many times, leads to configuration (q, W − mq). Since universal 
cycles can be iterated from any energy level, if q is reachable, then it is reachable with energy level W − mq . We make this 
explicit by adding to our arena a special self-loop on q, labelled with set(W − mq), which sets the energy level to W − mq
(in the same way as recharge transitions of [15]).

In the resulting arena, we can restrict to paths of the form γ1 ·ν1 ·γ2 ·ν2 · · ·νk ·γk+1, where νi are newly added transitions 
labelled with set(W − m), and γi are acyclic paths. Such paths have length at most (|Q | + 1)2. We can then inductively
compute the maximal energy level that can be reached (under our LW-energy constraint) in any state after paths of length 
less than or equal to (|Q | + 1)2 in the new arena with set(W − mq)-loops. This can be performed by unwinding (as a DAG)
the modified arena from the source state q0 up to depth (|Q | + 1)2, and labelling the states of this DAG (and in particular
target states if they are reachable) with the maximal energy level with which that state can be reached from (q0, L); this 
is achieved in a way similar to our algorithm for computing the effect of universal cycles, but this time only keeping the 
maximal energy level that can be reached (under LW-energy constraint). There are at most |Q | states per level in this 
DAG of depth at most (|Q | + 1)2. Hence, maintaining the maximal weights in a path of a LW-energy arena can be done in 
O (|Q |2 · |E|). Similarly, detecting a universal cycle on some state q at depth d in the DAG can be done by updating d · Q
labels, by considering all |E| edges from the states at level d − 1; hence in total O (|Q |3 · |E|). It follows:

Theorem 25. The existence of a winning path in one-player LW-energy-reachability games can be decided in PTIME.

Example 26. Consider the one-player arena of Fig. 8. We assume L = 0, and fix an even weak upper bound W . The state s
has W /2 disjoint cycles: for each odd integer i in [0; W − 1], the cycle ci is made of three consecutive edges with weights 
−i, +W and −W + i + 1. Similarly, the state s′ has W /2 disjoint cycles: for even integers i in [0; W − 1], the cycle c′

i has 
weights −i, +W and −W + i + 1. Finally, there are: two sequences of k edges of weight 0 from s to s′ and from s′ to s; an 
edge from the initial state to s of weight 1, and from s′ to target state qt of weight −W . The total number of states is then 
2W + 2k + 2.

In order to go from the initial state q0, with energy level 0, to the final state qt , we have to first take the cycle c1 (with 
weights −1, +W , −W + 2) on s (no other cycles ci can be taken). We then reach configuration (s, 2). Iterating c1 has no 
effect, and the only next interesting cycle is c2, for which we have to go to s′ . After running c2, we end up in (s′, 3). Again,
iterating c2 has no effect, and we go back to s, take c3, and so on. We have to take each cycle ci (at least) once, and take 
the sequences of k edges between s and s′ W /2 times each. In the end, we have a run of length 3W + W k + 2.

Let us look at the universal cycles that we have in this arena: besides the cycles made of the 2k edges with weight zero 
between s and s′ , the only possible universal cycles have to depart from the first state of each cycle ci (as they are the 
only states having a positive outgoing edge). Following Lemma 16, such cycles can be iterated arbitrarily many times, and 
set the energy level to some value in [L; W ]. Since the only edge available at the end of a universal cycle has weight +W ,
the exact value of the universal cycles is irrelevant: the energy level will be W anyway when reaching the second state of 
14
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each cycle ci . As a consequence, using set-edges in this example does not shorten the witnessing run, which then cannot 
be shorter than 3W + W k + 2.

4.2. Two-player case

We now move to the two-player setting. We begin with proving a result similar to Lemma 11:

Lemma 27. Let G be a two-player arena, equipped with an LW-energy-reachability objective. Let q be a state of G, and u ≤ u′ in 
[L; W ]. If Player 1 wins the game from (q, u), then she also wins from (q, u′).

Proof. Let σ be a winning strategy for Player 1 from (q, u). If she plays the same strategy from (q, u′), then for any strategy
of Player 2, the resulting outcome from (q, u′) follows the same transitions as the outcome of the same strategies from u,
with higher energy level. Since σ is winning from (q, u), it is also winning from (q, u′). �

By Martin’s theorem [26], our games are determined. It follows that if Player 2 wins from some configuration (q, v),
she also wins from (q, v ′) for all L ≤ v ′ ≤ v (assuming the contrary, i.e. (q, v ′) winning for Player 1, would lead to the 
contradictory statement that (q, v) is both winning for Player 1 and Player 2). Using classical techniques [7], we prove that 
Player 2 can be restricted to play memoryless strategies:

Proposition 28. For two-player LW-energy-reachability games, memoryless strategies are sufficient for Player 2.

Proof. According to Lemma 27, for each state q, there is an integer vq ∈ [L; W + 1] such that Player 1 wins the game from 
any configuration (q, v) satisfying vq ≤ v ≤ W , while Player 2 wins the game from any configuration (q, v) with L ≤ v < vq .

Assume that Player 2 wins the game from some state (q, v), with L ≤ v < vq . Denote with (q, pi, qi)1≤i≤m the set of 
outgoing transitions from q. By definition of vqi , Player 1 wins the game from any configuration of the form (qi, v ′) with 
v ′ ≥ vqi . Since Player 2 wins from (q, v), there must exist an index 1 ≤ i ≤ m such that v + pi < vqi . This defines a winning 
move for Player 2 from (q, v). The same argument applies in all states, and yields a memoryless winning strategy for
Player 2. �

A direct consequence of this result and of Theorem 25 is the following:

Corollary 29. Two-player LW-energy-reachability games are in coNP.

Whether those games can be solved in NP or are coNP-hard remains an open question.

5. Energy reachability games with soft upper bound

We now consider games with limited violations, i.e. (reachability) games with LSU#-energy, LSU#-energy and LSU�-
energy objectives. We address the problems of deciding the winner in the one-player and two-player settings, and consider
the existence and minimization questions.

Theorem 30. LSU#-energy, LSU#-energy and LSU�-energy (reachability) games are PSPACE-complete for one-player arenas, and 
EXPTIME-complete for two-player arenas.

Proof. Membership in PSPACE and EXPTIME can be obtained by building a variant GLSU of the GLU arena: besides storing 
the energy level in each state, we can also store the amount of violations (for any of the three measures we consider).
More precisely, given an arena G , lower and upper bounds L and U on the energy level, a soft bound S , and a bound V
on the measure of violations, for any of our three measures of violations, the maximal energy level that can be reached 
along a path with violations smaller than or equal to V is S + V · wmax, where wmax is the maximal weight in our
arena; for this reason, we may assume that U ≤ S + V · wmax. We then define a new arena2 GLSU with set of states 
(Q × ([L; U ] ∪ {⊥}) × ([0; V ] ∪ {⊥})3), and each transition (q, w, q′) of the original arena generates a transition from state 
(q, l, (n, c, s)) to state (q′, l′, (n′, c′, s′)) whenever

• l′ correctly encodes the evolution of the energy level:
– l′ = l + w if l and l + w are in [L; U ];
– l′ = ⊥ if either l = ⊥ or l + w < L or l + w > U ;

2 In order to factor our proof, we store all three measures of violations in one single arena.
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• n′ correctly stores the number of violations:
– n′ = ⊥ if l′ = ⊥ or n = ⊥;
– n′ = n if l′ ∈ [L; S];
– n′ = n + 1 if l′ ∈ (S; U ] and n + 1 ≤ V ;
– n′ = ⊥ if l′ ∈ (S; U ] and n + 1 > V .

• c′ is updated to count the current number of consecutive violations:
– c′ = ⊥ if l′ = ⊥ or c = ⊥;
– c′ = 0 if l′ ∈ [L; S];
– c′ = c + 1 if l′ ∈ (S; U ] and c + 1 ≤ V ;
– c′ = ⊥ if l′ ∈ (S; U ] and c + 1 > V .

• s′ encodes the sum of all violations:
– s′ = ⊥ if l′ = ⊥ or s = ⊥;
– s′ = s if l′ ∈ [L; S];
– s′ = s + (l′ − S) if l′ ∈ (S; U ] and s + (l′ − S) ≤ V ;
– s′ = ⊥ if l′ ∈ (S; U ] and s + (l′ − S) > V .

In this arena, n, c and s keep track of the number of violations, number of consecutive violations, and sum of violations;
their values are set to ⊥ as soon as they exceed the violation bound V , or if the energy level has left its range of allowed 
values [L; U ]. The arena GLSU is of exponential size, and our LSU�-energy-reachability problems can be reduced to solving 
reachability of the relevant set of states in that arena (e.g., Player 1 wins the LSU#-energy reachability game if, and only if,
she wins in the expanded game GLSU for the objective of reaching the target set without visiting states where n = ⊥).

Our hardness results are proved by setting the number/amount of allowed violations to zero, thereby recovering the 
classical LU-energy-reachability games, which were proved PSPACE-complete and EXPTIME-complete in Theorem 7 for
one-player and two-player arenas, respectively.

Solving LSU#-energy, LSU#-energy, LSU�-energy infinite-duration games can be performed with arena GLSU built above.
Now, the objective in LSU#-energy, LSU#-energy, LSU�-energy games is to enforce infinite runs, that avoid states with l = ⊥
and with n = ⊥, c = ⊥ or s = ⊥, depending on the chosen criterion on violation. Again, these strategies can be found in 
PSPACE for the one-player case, and in EXPTIME in the two-player case. For the hardness part, reduction from LU-energy
games obtained by setting V = 0 still applies. �
Remark 31. In our proof, the strong upper bound U is given as input. We could also assume that no such upper bound 
is given: if the amount of violations is bounded by V along a run, then the maximal energy level that can be reached in
LSU#-energy, LSU#-energy games is bounded by S + V · wmax, where wmax is the maximal weight of transitions in G , and 
by S + V in LSU�-energy games. As games that are winning for a strong upper bound U are also winning with strong upper
bound U+1, we can prove existence of a bound by solving a game with this maximal energy levels as strong upper bound.
We can even compute the smallest U for which Player 1 wins a given LSU�-energy game using binary search. LSU�-energy
games and their bound existence problems hence have the same PSPACE and EXPTIME complexities.

6. Existence of bounds for energy games

In this section we address the problems of existence and computation of upper bounds U under which Player 1 has a 
winning strategy in energy games.

6.1. Existence of bounds for reachability games

The case of energy-reachability is trivial: as soon as there exists a winning strategy for L-energy-reachability, the maximal 
energy level along any outcome of a winning strategy can serve as (weak) upper bound for LW-energy- and LU-energy-
reachability games. As a consequence:

Proposition 32. The upper-bound- and weak-upper-bound existence problems for energy-reachability games are decidable in PTIME
for one-player arenas and in NP ∩ coNP for two-player arenas.

Noticing that from a configuration (q, L + |Q |.wmax) where wmax is the maximal absolute value of a weight in the arena,
one can reach any state qt connected to q, we can give a bound on the maximal value of strong and weak upper bounds 
in energy-reachability games. Even if the path from q to qt is composed only of negative transitions, an energy level of 
L + |Q |.wmax allows to reach qt without reaching an energy level below L. Similarly, if the path from q to qt is composed 
only of positive transitions, the value of energy can reach a level up to L + 2 · |Q | · wmax . Using binary search in interval 
[L, L + 2 · |Q | · wmax], we can hence find minimal strong upper bounds for energy-reachability games with one-player arenas 
in PSPACE, and weak upper bounds in PTIME.
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A similar reasoning can be applied in the two-player setting, based on the doubly-exponential bound given by [4,
Lemma 2]. Again using binary search, the optimal bounds can then be computed in EXPTIME.

6.2. Existence of bounds for infinite-duration games

In this section, we focus on the existence of upper bounds for infinite-duration games.

6.2.1. LU-energy games
We begin with LU-energy constraints, for which we prove the following result:

Theorem 33. Given an arena G and a lower bound, deciding whether there exists an upper bound U such that the LU-energy game is 
winning for Player 1 is decidable in NP for one-player arenas, and in 2-EXPTIME for two-player arenas.

Proof. The existence of an upper-bound for two-player multiweighted LU-energy games where energy levels and bounds 
are defined as a k-dimensional vector of energy levels, has been shown decidable in 2k-EXPTIME in [23]. Using this result 
we immediately get that the existence of an upper-bound for two-player LU-energy games is decidable in 2-EXPTIME.

We now focus on the one-player case, and prove that it is decidable in NP. As a first step, assuming that an infinite path 
along which the energy level remains bounded exists, we prove that it can be detected by looking for adequate cycles (and 
whether they are reachable).

Indeed, assume that such a witness path exists from some given configuration (q0, l0); then there must be a configu-
ration (q, l) occurring at least twice along that path, so that there is a witness path of the form ρ1 · ρω

2 , where ρ2 is a 
zero-cycle. Then two cases may occur:

(i) either ρ2 contains a simple zero-cycle: in that case, that simple cycle can be iterated after some initial prefix (and with 
some initial energy level). So in that case, there is a witness path of the form ρ1 · ρω

2 where ρ2 is a simple zero-cycle;
we can additionally assume that ρ2 is universal (see Definition 17), i.e., that the energy level along ρ2 is always above 
the initial energy level.

(ii) or, if ρ2 does not contain a simple zero-cycle, it must contain at least one simple positive cycle σ1 and at least one 
simple negative cycle σ2. Then clearly enough two such cycles (and some acyclic paths α1→2 and α2→1 connecting 
between) suffice to get an infinite run in which energy level remains bounded (and above L): σ1 can be iterated to 
gain energy, and when the energy level is high enough the path goes through α1→2 to σ2, possibly cycling along σ2 as 
long as there remains enough energy to take α2→1 and reach σ1 again. Then again, there exists a witness path of the 
form ρ1 · ρω

2 where ρ2 is a universal 0-cycle starting with a positive simple cycle σ1.

Our NP algorithm will then non-deterministically select

• a candidate state q0 to be the first state of ρ2;
• either a candidate universal simple 0-cycle starting in q0, in order to witness Condition (i), or a candidate universal 

simple positive cycle starting at q0 and a candidate negative simple cycle reachable and co-reachable from q0, in order
to witness Condition (ii),

and check that those candidates indeed satisfy the requirements, including the fact that q0 is reachable from the initial state.
Those verifications can be performed in polynomial time, so that our algorithm is indeed in NP. �
6.2.2. LW games

In [23], the authors show how to find a minimal bound for multi-dimensional energy games with weak upper bounds.
Multi-dimensional energy games are weighted games in which transitions are labelled with k-vectors of weights. Ac-
cordingly, configurations are pairs of the form (q, �v) where �v is a vector of integers of dimension k. The set MinW of 
k-dimensional vectors that are winning for LW-energy games and are minimal (w.r.t. componentwise comparison) is upward-
closed, and effectively computable, using a coverability tree. The termination argument relies on well-quasi orders, and the 
complexity is non-elementary.

The technique directly applies to our LW-energy games, which are games of dimension 1. However, with games of 
dimension 1, algorithms to check existence of a weak upper bound can be efficient.

Theorem 34. The existence of a weak upper bound for an LW-energy game can be decided in PTIME for single player, and in NP∩coNP
for two players.

Proof. We proceed in two steps: we first prove that if there is a weak upper bound for an LW-energy game, then there is 
one smaller than or equal to L + |Q | · wmax. We then check, using techniques of [2], whether this bound fits.
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Lemma 35. Let G be a 2-player arena and L be a lower bound. If there exists a weak upper bound W for which Player 1 wins the 
LW-energy game in G, then there exists such a bound smaller than L + |Q | · wmax , where wmax is the maximal absolute value of 
weights in G.

Proof. We establish the bound by analyzing the shape of a coverability tree of the arena. We first recall the construction 
of [23] (for k-dimensional arenas).

A coverability tree is a structure T = (N, λ, →) where N is a set of nodes, labelled via λ with a state and a k-dimensional 
vector of integers, and → is a transition relation between nodes of T . The construction of a coverability tree is performed 
inductively, and starts from the initial node n0 with λ(n0) = (q0, (Li)1≤i≤k). Each node n with λ(n) = (q, �v) has a successor n′
with λ(n′) = (q′, �v ′) if the following three conditions hold:

• vi ≥ Li for all 1 ≤ i ≤ k;
• there does not exist a predecessor n′′ of n with λ(n′′) = (q, �v ′′) such that v ′′

i ≤ vi for some 1 ≤ i ≤ k;

• there exists a transition (q, �p, q′) and �v ′ = �v + �p.

Hence there are two kinds of leaves (assuming that each node in the arena has at least one successor): those which have 
vi < Li for some 1 ≤ i ≤ k (which are called losing), and those having a predecessor with lower energy level in all dimensions 
(called winning).

As argued in [23], configurations form a well-quasi-order, so the construction of this coverability tree eventually termi-
nates, and Player 1 wins the game if, and only if, she has a strategy to guide the game to winning leaves.

In the special case of dimension 1, along a run, if a configuration (q, v) appears, then any subsequent configuration of 
the form (q, v ′) with v ′ ≥ v (or with v ′ < L) is a leaf. Hence, along any branch in the tree, besides the leaf,

• the first state q0 can occur only at the root or at leaves in the tree,
• since the second state on along the branch occurs with energy level at most L + wmax, there can be at most wmax

occurrences of that state of that branch, all with energy level at most L + wmax;
• by induction, the p-th different state along the branch is entered the first time with energy level at most L + (p − 1) ·

wmax, and there can be at most (p − 1) · wmax occurrences of that state along the branch.

In the end, no branch can be longer than 1 + ∑
1≤p≤|Q |(p − 1) · wmax, which is O (|Q |2) · wmax. Moreover, the energy level 

along any branch is bounded by L + (|Q | − 1) · wmax + wmax (where the last term wmax is due to the last transition to the 
leaf), which is L + |Q | · wmax. �

It is shown in [23] that for multi-dimensional energy games, it is sufficient to check for the existence of a winning 
leaf in the coverability tree, and to use the maximal weight found in the tree as a weak upper bound, since it does 
not truncate any path found in the tree. Building the whole coverability tree for a LW-energy game is costly. However,
the result of [23] and the upper bound for the weak energy level shown in Lemma 35 mean that it suffices to check
if L + |Q | · wmax indeed allows for winning strategies of Player 1. In the 1-player case, the algorithm of [2, Theorem 7]
performs this check in time O (|Q |2 · |E| · log(W ))), where W is the weak upper bound (it is an adaptation of the Bellman-
Ford algorithm). We thus get an algorithm checking for the existence of a weak upper bound for 1-player LW-energy games 
in time O (|Q |2 · |E| · log(L + |Q | · wmax)).

In the 2-player case, following [2, Lemma 10], LW-energy games are memoryless determined. It thus suffices to non-
deterministically select a strategy for either of the players and check (using the algorithm for the 1-player case) if this 
strategy is winning. This shows that deciding the existence of a weak upper bound for 2-player LW-energy games is in 
NP ∩ coNP. �

Remark 36. Since we can derive an exponential upper bound Umax on the values of U that allow winning outcomes in
LU-energy games or LSU�-energy games, and Wmax on the values of W in LW-energy games, we can give algorithms to 
characterize optimal values for those bounds: checking that a given value B is optimal is achieved by checking that B is 
indeed a valid bound, and that B − 1 is not. Computing such optimal bounds can be performed using binary search, which 
requires a polynomial number of such verifications.

In the one-player LW-energy games setting, checking that a given value W is the optimal weak-upper bound can be 
achieved in polynomial time. For one-player LU-energy games, checking that a given value U is the optimal strong upper
bound is in DP. In two-player LU-energy games, checking optimality of a strong upper bound is in EXPTIME. For weak
upper bounds in two-player LW-energy games, since checking the existence of an infinite run for a fixed weak upper bound 
is in NP ∩ coNP (see [2]), we can guess and check polynomial certificates that a given bound B is valid and that B − 1 is 
not, and symmetrically. So checking whether a given bound is the optimal weak upper bound is in NP ∩ coNP.
18
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7. Conclusion

This paper has considered several variants of energy games. The first variant defines games with upper and lower bound 
constraints, combined with reachability objectives. The second variant defines games with a strong lower bound and a soft 
upper bound, which can be temporarily exceeded. In the one player case, complexities ranges from PTIME to PSPACE-
complete, and in the two-player case from NP ∩ coNP to EXPTIME-complete. In general, the complexity is the same for a 
reachability and for an infinite run objective. Interestingly, for LW-energy games, the complexity of the single player case is 
PTIME, but reachability objectives require exponential memory (in the size of the weak upper bound) while strategies are 
memoryless for infinite run objectives. The associated bound existence problems range from PTIME to PSPACE-complete in 
the one-player setting, and from PTIME to 2-EXPTIME for two-player. However, proving optimality of a given bound is not 
harder than the energy game itself.

A possible extension of this work is to consider energy games with mean-payoff functions and discounted total payoff,
both for the energy level and for the violation constraints.
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