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Abstract This paper presents (permissive) Quantitative Strategy Tem-
plates (QaSTels) to succinctly represent infinitely many winning strate-
gies in two-player energy and mean-payoff games. This transfers the re-
cently introduced concept of Permissive (qualitative) Strategy Templates
(PeSTels) for ω-regular games to games with quantitative objectives. We
provide the theoretical and algorithmic foundations of (i) QaSTel syn-
thesis, and (ii) their (incremental) combination with PeSTels for games
with mixed quantitative and qualitative objectives. Using a prototype
implementation of our synthesis algorithms, we demonstrate empirically
that QaSTels extend the advantageous properties of strategy templates
over single winning strategies – known from PeSTels – to games with
(additional) quantitative objectives. This includes (i) the enhanced ro-
bustness of strategies due to their runtime-adaptability, and (ii) the com-
positionality of templates w.r.t. incrementally arriving objectives. We use
control-inspired examples to illustrate these superior properties of QaS-
Tels for CPS design.

1 Introduction

Two player games on finite graphs provide a powerful abstraction for model-
ing the strategic interactions between reactive systems and their environment.
In this context, game-based abstractions are often enriched with quantitative
information to model aspects like energy consumption, cost minimization, or
maintaining system performance thresholds under varying conditions. As a re-
sult, games with quantitative objectives, such as energy [7] or mean-payoff [28]
have gained significant attention in recent years. These games have been ap-
plied to a wide range of CPS problems, such as energy management in electric
vehicles [7], optimizing resource-constrained task management in autonomous
robots [18,22], embedded systems [10], and dynamic resource allocations [5].

In practical CPS applications, strategic control decisions (i.e., the moves of
the controller player in the abstract game) are typically implemented via low-
level actuators. For instance, a robot’s strategic decision to move to a different
room involves motion control integrated with LiDAR-based obstacle avoidance.
However, due to unmodeled dynamics of the physical environment that become
observable only at runtime, strategic adaptations may be necessary [17,26]. For
example, if the robot detects that an entrance is obstructed by obstacles (e.g.,
humans), it should dynamically adjust its strategy and navigate through an
alternative door instead. Therefore, synthesized (high-level) control strategies
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2 A. Anand et al.

must not only be correct-by-design, but also flexible enough to accommodate
runtime adaptations. This control-inspired property of strategies has recently
been formalized via permissive strategy templates (PeSTels) [2], which are simi-
lar to classical strategies but contain a vast set of relevant strategies in a succinct
and simple data structure. Intuitively, PeSTels localize required progress towards
ω-regular objectives by classifying outgoing edges of a control-player vertex as
unsafe, co-live and live – indicating edges to be taken never, finitely often and
infinitely often, respectively, in case the source vertex of the edge is visited in-
finitely often.

Inspired by PeSTels and driven by the need to capture quantitative objectives
in CPS design, this paper introduces Quantitative Strategy Templates (QaSTels)
for games with energy and mean-payoff objectives. n the context of the previ-
ously discussed robot example, such games model scenarios where a robot with
limited battery must make informed re-routing decisions at runtime, ensuring
that its remaining energy suffices for the required tasks. Similar to PeSTels,
QaSTels localize necessary information about the future of the game. In con-
trast to PeSTels, which localize liveness requirements induced by a qualitative
objective, QaSTels consider quantitative objectives and thereby localize the re-
quired energy loss and gain through local edge annotations. Knowing the current
energy level at runtime, the control player can select from all edges that remain
feasible given the available energy. This contrasts with standard game-solving
approaches, which typically store only a single (optimal) action per node.

Concretely, our contributions are as follows: (i) We formalize QaSTels for
energy and mean-payoff objectives, and present algorithms to extract winning
strategies from them. (ii) We introduce an edge-based value iteration algorithm
to compute winning QaSTels and show that QaSTels are permissive, i.e., they
capture all winning strategies for energy objectives and all finite-memory winning
strategies for mean-payoff objectives. (iii) We combine QaSTels with a bounded
version of PeSTels, and propose an efficient incremental algorithm for updat-
ing templates and strategies under newly arriving qualitative and quantitative
objectives. (iv) We highlight the advantages of strategy templates for games
with quantitative objectives, and the combination of quantitative and quali-
tative objectives, via extensive experiments on benchmarks derived from the
SYNTCOMP benchmark suit. Detailed proofs for all claims are provided in the
appendix.

Related Work. The computation of permissive strategies has received sig-
nificant attention over the past decade, particularly for qualitative objec-
tives [6, 8, 20, 25]. A key development in this area is the introduction of per-
missive strategy templates (PeSTels) by Anand et al. [1, 2], which capture a
strictly broader class of winning strategies while maintaining the same worst-
case computational complexity as standard game-solving techniques. This paper
extends the idea behind PeSTels to quantitative games.

When only ‘classical’ synthesis algorithms are available, achieving the adapt-
ability of strategies that motivate PeSTels requires recomputing a new strategy
from scratch whenever moves become unavailable at runtime or additional objec-
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tives arise. For the objectives considered in this paper, this entails using ‘classi-
cal’ synthesis algorithms for energy objectives [7], mean-payoff objectives [9,28],
multi mean-payoff objectives [27], and mean-payoff co-Büchi objectives [11, 12].
However, since these approaches recompute strategies from scratch at each iter-
ation, they are computationally expensive. Our benchmark experiments demon-
strate that QaSTel-based adaptations offer a more efficient alternative for the
applications considered.

2 Preliminaries

In this section, we introduce the basic notations used throughout the paper.
We denote Z as the set of integers, Q as the set of rational numbers, N as the
set of natural numbers including 0, and N>0 as the set of positive integers. Let
N∞ = N ∪ {∞} and Z∞ = Z ∪ {∞,−∞}. The interval [a; b) represents the set
{a, a+ 1, · · · , b}.

2.1 Two-Player Games

A two-player game graph is a pair G = (V,E), where V = V0 ⊎ V1 is a finite
set of nodes, E ⊆ V × V is a set of edges. The nodes are partitioned into two
sets, V0 and V1, where Vi represents the set of nodes controlled by Player i for
i ∈ {0, 1}. Further, we write Ei to denote the set of edges originating from nodes
in Vi, i.e., Ei = E ∩ (Vi × V ). Given a node v, we write E(v) to denote the set
{e ∈ E | e = (v, v′) for v′ ∈ V } of all outgoing edges from v.
Value Functions. For a set of nodes V , and a set of edges E let FV denote
{f | f : V → N∞}, and FE denote {f | f : E → N∞}.
Plays. A play ρ = v0v1 . . . ∈ V ω on G is an infinite sequence of nodes starting
from v0 such that, (vi, vi+1) ∈ E for each i. We denote the ith node vi of ρ as ρ[i]
and use the notations ρ[0; i] = v0 . . . vi, ρ[i; j] = vi . . . vj , and ρ[i;∞] = vi . . . to
denote a prefix, infix, and suffix of ρ, respectively. We write v ∈ ρ (resp. e ∈ ρ)
to denote that the node v (resp. the edge e) appears in ρ. Furthermore, we write
v ∈ Inf(ρ) (resp. e ∈ Inf(ρ)) to denote that node v (resp. edge e) appears
infinitely often in the play ρ.We denote by plays(G) the set of all plays on G,
by plays(G, v) denote the set of all plays starting from node v.
Strategies. A strategy π for Player i, where i ∈ {0, 1} (or, a Player i-strategy)
is a function π : V ∗ · Vi 7→ E such that for all H · v ∈ V ∗ · Vi, we have π(H · v) ∈
E(v). A play ρ = v0v1 . . . is called a π-play if it follows π, i.e., for all j ∈ N,
whenever vj ∈ Vi it holds that π(v0 . . . vj) = (vj , vj+1). Given a strategy π,
we write playsπ(G, v) to denote the set of all π-plays starting from node v
and playsπ(G) to denote the set of all π-plays in G. For an edge e, we write
playsπ(G, e) to denote the set of plays that start with e and follows π, i.e., a
play ρ ∈ playsπ(G, e) iff (ρ[0], ρ[1]) = e and ρ[1;∞] ∈ playsπ(G, ρ[1]).

Let M be a memory set. A Player i-strategy π with memory M is represented
as a tuple (M,m0, α, β), where m0 ∈ M is the initial memory value, α : M ×
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V → M is the memory update function, and β : M × Vi → V is the state
transition function. Intuitively, if the current node is a Player i node v and the
current memory value is m, the strategy π selects the next node v′ = β(m, v)
and updates the memory to α(m, v). If M is finite, we call π a finite-memory
strategy ; otherwise, it is an infinite-memory strategy. Formally, given a history
H · v ∈ V ∗ · Vi, the strategy is defined as π(H · v) = β(α̂(m0, H), v), where
α̂ is the canonical extension of α to sequences of nodes. A strategy is called
memoryless or positional if |M | = 1. For a memoryless strategy π, it holds that
π(H1 · v) = π(H2 · v) for every history H1, H2 ∈ V ∗. For convenience, we write
π(v) instead of π(H · v) for such strategies.

For a game graph G = (V,E) with a finite-memory strategy π =
(M,m0, α, β), we denote by Gπ = (V ′, E′) the product of G and π, that is, V ′

0 =
V0 ×M , V ′

1 = V1 ×M , and E′ = {((v,m), (v′,m′)) | (v, v′) ∈ E,m′ = α(m, v)}.
With slight abuse of terminology, we say that a state v is reachable from q in
Gπ if there exists a tuple (v,m′) reachable from (q,m0) in Gπ. Similarly, we
say that a sequence v0v1 . . . is a play in Gπ if there exists a corresponding play
(v0,m0)(v1,m1) . . . in Gπ.
Games and Objectives. A game is a tuple (G,φ), where G is a game graph
and φ ⊆ V ω is an objective for Player 0. A play ρ is considered winning if ρ ∈ φ.
A Player 0 strategy π is winning from a node v, if all π-plays starting from v
are winning. Similarly, π is winning from V ′ ⊆ V if it is winning from all nodes
in V ′. We define the winning region Win(G,φ) as the set of nodes from which
Player 0 has a winning strategy in (G,φ). A Player 0 strategy is winning if it is
winning from Win(G,φ).

We define a weight function w : E → [−W ;W ] for some W ∈ N>0, which
assigns an integer weight to each edge in G. This function extends naturally
to finite infixes of plays, i.e., w(v0v1 . . . vk) =

∑k−1
i=0 w(vi, vi+1). Furthermore,

we define the average weight of a finite prefix v0v1 . . . vk as avg(v0v1 . . . vk) =
1
k

∑k−1
i=0 w(vi, vi+1). With this, we consider the following objectives in games:

▷ (Quantitative) Energy Objectives. Given a weight function w and an ini-
tial credit c ∈ N, the energy objective is defined as Enc(w) = {ρ ∈ V ω |
c + w(ρ[0; i]) ≥ 0, ∀i ∈ N}. Intuitively, the energy objective ensures that the
total weight (‘energy level’) remains non-negative along a play.
▷ (Quantitative) Mean-Payoff Objectives. Given a weight function w, the mean-
payoff objective is defined as1 MP(w) = {ρ ∈ V ω | lim supn→∞ avg(ρ[0;n]) ≥ 0}.
Intuitively, the mean-payoff objective ensures that the limit average weight of a
play is non-negative.
▷ (Qualitative) Parity Objectives. Given a priority labeling LP : V → [0; d] for
some d ∈ N>0, which assigns a priority to each node in G, the parity objective is
defined as Parity(LP ) = {ρ ∈ V ω | maxv∈Inf(ρ) LP (v) is even}. Intuitively, the
parity objective ensures that the highest priority seen infinitely often along a
play is even.

1 We note that mean-payoff objectives can also be defined via the limit-inferior func-
tion i.e., {ρ ∈ V ω | lim infn→∞ avg(ρ[0;n]) ≥ 0}. However, it has been shown that
games with either definition are equivalent [15, Corollary 8].
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We refer to a game with a mean-payoff, energy, or parity objective as a mean-
payoff game, energy game, and parity game, respectively. A game is called mixed
if it is equipped with a conjunction of quantitative and qualitative objectives.
Further, we call G weighted, if it is annotated with a weight function w, denoted
by Gw. Consequently, energy and mean-payoff are referred to as weighted games.
Fixed and Unknown Initial Credit Problem. We consider the following
game variants for energy objectives. (1) Given an initial credit c, the energy
game with fixed initial credit c is defined as the game (G,Enc(w)). (2) A game
(G,En(w)) with unknown initial credit asks Player 0 to ensure the objective
Enc(w) for some finite initial credit c.

In an energy game (G = (V,E),En(w)), there exists an optimal initial credit
opt(v) ∈ Z∞ for each node v, where opt(v) is the minimal value (in N∞) such
that for every initial credit c ≥ opt(v), there exists a winning strategy from v in
the game (G,Enc(w)). We use opt ∈ FV to denote this optimal value function
which assigns the optimal initial credit to each node in the game graph. It is
well-known that the optimal initial credit is upper bounded by c∗ = W · |V |,
where W is the maximum weight in the weight function w. Hence, for any initial
credit c ≥ c∗, the winning region for energy game (G,En(w)) with unknown
initial credit is the same as the winning region for energy game (G,Enc(w)).
Moreover, every winning strategy in (G,Enc(w)) is also winning in (G,En(w)).

3 Quantitative Strategy Templates (QaSTels)

In this section, we first define a quantitative strategy template (QaSTel) for
weighted games and show how it can be used to represent the set of strategies in
a weighted game. We then define winning and maximally permissive QaSTels.

Definition 1 (Quantitative Strategy Template (QaSTel)). Given a game
graph G = (V,E), a QaSTel for Player 0 is a function Π : V0 × N∞ → 2E that
maps a Player 0 node u and the current credit c to a subset of outgoing edges of
u in G that are activated by c s.t. Π(u, c) ⊆ Π(u, c′) for all c′ ≥ c.

We also use a QaSTel Π as a function V0×Z∞ → 2E by extending it to negative
credits as follows: Π(v, c) = ∅ for all c < 0. If Π(u, i) = Π(u, i + 1) = · · · =
Π(u, j) = E′, then for notational simplicity, we will write Π(u, [i; j]) = E′. This
naturally defines the activation function for an edge e, denoted by actΠ(e), as
the smallest value k such that e ∈ Π(u, [k;∞]).

Given a weighted game Gw with a QaSTel Π and a weight c ∈ N, a play
ρ = v0v1 · · · is said to be a (Π, c)-play if there exists a k ∈ N∞ such that for
all i ∈ [0; k] with vi ∈ V0, (vi, vi+1) ∈ Π(vi, c + w(ρ[0; i])) and if k ̸= ∞, then
whenever vk+1 ∈ V0 it holds that Π(vk+1, c+w(ρ[0; k+1])) = ∅. Intuitively, either
the play only uses the active edges from the QaSTel forever, or it reaches a node
where no edge is active in the QaSTel and then the play continues with arbitrary
edges. We collect all (Π, c)-plays in G from a node v in the set playsΠ(G, c, v).
Similarly, we write playsΠ(G, c) to denote the set of all (Π, c)-plays in G.
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QaSTels define a set of (Player 0) strategies in a weighted game which follow
it, as formalized next.

Definition 2. Given an energy game (G,Enc(w)) with initial credit c ∈ N, a
strategy π is said to follow a QaSTel Π, denoted by (G, π) ⊨c Π (or simply π ⊨c

Π when G is clear from the context), if playsπ(G) ⊆ playsΠ(G, c). Similarly,
for a mean-payoff game (G,MP(w)), a strategy π is said to follow a QaSTel Π
if (G, π) ⊨c Π for some c ≥ W · |V |.

For mean-payoff games, the previous definition chooses the initial credit c to
be at least the upper bound on the optimal credit, i.e., c ≥ W · |V |. This is
motivated by the fact that mean-payoff games are equivalent to energy games
with unknown initial credit [9]. Therefore, winning strategies of mean-payoff
games can be captured by winning strategies of energy games with credit above
the upper bound on the optimal credit.

In the upcoming definition, we define a winning QaSTel.

Definition 3 (Winning QaSTel). Given a weighted game, a QaSTel Π is said
to be winning from a node v (resp. a set V ′ of nodes) if every strategy following
Π is also winning from v (resp. V ′). Furthermore, a QaSTel Π is said to be
winning if it is winning from the winning region.

A winning QaSTel is maximally permissive if it includes all winning strategies.

Definition 4 (Maximal Permissiveness). Given a weighted game, a QaS-
Tel Π is said to be maximally permissive if every winning strategy follows Π.
Furthermore, a QaSTel Π is said to be f-maximally permissive if every winning
strategy with finite memory follows Π.

Given the simple and local structure of QaSTels, one can easily extract a
positional strategy for Player 0 following the QaSTel by picking the edge with
the smallest activation value at every node. This clearly results in a winning
strategy if the QaSTel is winning.

Proposition 1. Given a weighted game graph Gw s.t. G = (V,E) with a QaSTel
Π, a positional strategy π following Π can be extracted in time O(|E|). Let
ExtractStrat(G,w,Π) be the procedure extracting this strategy.

Proposition 2. Given a weighted game with game graph Gw and a winning
QaSTel Π, the strategy ExtractStrat(G,w,Π) is winning.

4 Synthesizing QaSTels

We now discuss the synthesis of QaSTels over weighted games. As QaSTels are
defined on edges, we first introduce an edge-optimal value function and an edge-
based value iteration algorithm for weighted games. Then, we show how to ex-
tract optimal QaSTels from the edge-optimal value function. Finally, we show
that optimal QaSTels are winning and permissive.
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Edge-based Value Iteration. It is known that both energy games and mean-
payoff games (with threshold 0 as considered in objective MP(w)) have the same
value iteration algorithm [9]. To simplify the presentation we therefore restrict
the discussion to energy games.

Recall that in energy games, opt(v) is the minimal credit required to win the
game from node v. We extend this notion to optE(e) such that optE(e) is the
minimal credit required to take the edge e and win the energy game from the
source node of e. Formally, for some edge e = (u, v), optE(e) is the minimal value
(in N∞) such that for any initial credit c ≥ optE(e), there exists a Player 0 strat-
egy π with playsπ(G, e) ⊆ Enc(w). To compute optE, we extend the standard
value iteration algorithm to an edge-based value iteration algorithm.

Given a weighted game graph Gw, the standard value iteration algorithm
computes the least fixed point of the operator OV : FV → FV defined as:

OV (µ)(u) =

{
min{(µ(v)⊖ w(e)) : e = (u, v) ∈ E}, if u ∈ V0

max{(µ(v)⊖ w(e)) : e = (u, v) ∈ E}, if u ∈ V1

(1)

where l ⊖ w = max(l − w, 0). This fixed-point computation is initialized with
an initial function µin : V → Z, and each value is upper bounded by |V | · W ,
i.e., once a value reaches |V | · W + 1, we replace it by ∞. Let us denote this
procedure of fixed-point computation of an operator O starting from an initial
function µin as FixPoint(G,w,O, µin). Then, the optimal value function opt

can be obtained by FixPoint(G,w,OV , µ0) where µ0(v) = 0 for all v ∈ V .
To compute the edge-optimal value function optE, we modify the value it-

eration algorithm by extending the operator OV from functions over vertices to
functions over edges. Hence, we define OE : FE → FE for an edge e = (u, v) as:

OE(µ)(e) =

{
min{µ(e′)⊖ w(e) : e′ ∈ E(v)}, if v ∈ V0

max{µ(e′)⊖ w(e) : e′ ∈ E(v)}, if v ∈ V1.
(2)

Remark 1. It is not hard to see that the operators OE and OV are closely related.
In particular, if µV

i ∈ FV and µE
i ∈ FE are the corresponding value functions

obtained in the i-th iteration of OV and OE respectively, then µE
i (e) = µV

i (v)⊖
w(e) for every edge e = (u, v). This leads to a similar relation between opt and
optE, and hence, one can also obtain the optimal QaSTel using the standard
node-based value iteration algorithm. However, our choice of presenting the edge-
based approach allows us to explain our idea better, at no additional cost.

With Remark 1, the following theorem directly follows from the properties
of the standard value iteration algorithm.

Theorem 1. Given a game graph G = (V,E) and weight function w : E →
[−W,W ], the fixed-point FixPoint(G,w,OE , µ0) is the edge-optimal value func-
tion optE and can be computed in time O(|V | · |E| ·W ).

Given a weighted game graph Gw, the winning region W for both mean-
payoff and energy games with unknown initial credit can be extracted from the
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Edge-based Value Iteration
- e1 e2 e3 e4 e5 e6 e7 e8
µ0 0 0 0 0 0 0 0 0
µ1 0 2 5 2 0 0 0 1
µ2 0 2 5 2 0 1 0 2
µ3 0 2 5 2 0 2 0 3
µ4 0 2 5 2 0 3 0 4

...
µ15 0 2 5 2 0 14 0 15
µ16 0 2 5 2 0 15 0 ∞
µ17 0 2 5 2 0 ∞ 0 ∞

a b c

e1 = +1

e2 = −2

e3 = −5

e4 = −2

e5 = +1
e6 = 0

e7 = 0

e8 = −1

(a, [0; 2)) 7→ {e1}
(a, [2; 5)) 7→ {e1, e2}

(a, [5;∞)) 7→ {e1, e2, e3}
(b, [0; 2)) 7→ {e5}

(b, [2;∞)) 7→ {e5, e4}

Figure 1: Example of an energy game (right top) with the computation for the
edge-based value iteration (left) and the optimal QaSTel (right bottom).

edge-optimal value function µ = optE as

W := {v ∈ V0 | ∃e ∈ E(v). µ(e) ̸= ∞} ∪ {v ∈ V1 | ∀e ∈ E(v). µ(e) ̸= ∞}. (3a)

Furthermore, for energy games with initial credit c we obtain the winning region

Wc := {v ∈ V0 | ∃e ∈ E(v). µ(e) ≤ c} ∪ {v ∈ V1 | ∀e ∈ E(v). µ(e) ≤ c}. (3b)

QaSTel Extraction. Given an edge function µ ∈ FE , we can extract a QaSTel
Π from µ as follows. For every node u ∈ V and credit k ∈ N∞, Π(u, k) defines
the set of edges that can be taken from u with credit k, i.e.,

Π(u, k) := {e ∈ E(u) | k ≥ µ(e)}. (4)

Intuitively, in an energy game, the QaSTel in (4) allows taking an edge e when-
ever its feasible w.r.t. edge function µ, i.e., the current energy is more than the
edge value µ(e). We call the QaSTel in (4) optimal for the weighted game graph
Gw if µ is the edge-optimal value function optE. Given an initial edge func-
tion µin, we write computeQaSTel(G,w, µin) to denote the procedure that
computes the fixed-point µ = FixPoint(G,w,OE , µin) and returns the corre-
sponding winning region (as in (3)) and the corresponding QaSTel obtained from
the µ (as in (4)). This means, the optimal QaSTel can be obtained by the proce-
dure computeQaSTel(G,w, µ0) (where µ0 is the zero function on edges). An
example of the computation of the optimal QaSTel is shown in Figure 1.
Winning and Maximally Permissive QaSTels. We now show that opti-
mal QaSTels are winning for weighted games, and (f-)maximally permissive for
(mean-payoff) energy games. As a play defined by an optimal QaSTel only takes
an edge if the credit is higher than its edge-optimal value, it is winning in the
energy game. Furthermore, the equivalence of energy and mean-payoff games
gives the following result.
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Theorem 2. Given a weighted game graph Gw, the optimal QaSTel Π is win-
ning in both the mean-payoff game (G,MP(w)) and the energy game (G,Enc(w))
for every initial credit c ∈ N.

As an optimal QaSTel allows every edge ensuring positive energy w.r.t. the
current credit, it is maximally permissive in an energy game.

Theorem 3. Given a weighted game graph Gw, the optimal QaSTel Π is max-
imally permissive in the energy game (G,Enc(w)) for every c ∈ N.

Unlike in energy games, the optimal QaSTels are not maximally permissive
in mean-payoff games. However, it can capture all winning strategies with finite
memory, i.e., it is f-maximally permissive. To show this, we use the following
property of finite memory winning strategies in mean-payoff games.

Lemma 1. Let (G,MP(w)) be a mean-payoff game with finite memory winning
strategy π. Then there exists a weight bound Bπ ∈ N such that for every π-play
ρ from a node v ∈ W(G,MP(w)), it holds that w(ρ[0; i]) ≥ −Bπ for all i ∈ N.

With the above lemma, one can see that every winning strategy π in the
mean-payoff game is a winning strategy in the energy game with initial credit
c = max{Bπ,W · |V |}. Combining this with Theorem 3, we get the following
result.

Theorem 4. Given a weighted game graph Gw, the optimal QaSTel Π is f-
maximally permissive in the mean-payoff game (G,MP(w)).

This shows that a winning and permissive QaSTel can be obtained by the
procedure computeQaSTel(G,w, µ0), giving us the following result.

Corollary 1. Given a weighted game graph Gw, a winning and maximally
permissive QaSTel for the energy game (G,Enc(w)) can be computed in time
O(|V | · |E| · W ). Similarly, a winning and f-maximally permissive QaSTel for
the mean-payoff game (G,MP(w)) can be computed in time O(|V | · |E| ·W ).

5 Applications of QaSTels

As discussed in the introduction, our study of QaSTels is inspired by the advan-
tages their qualitative counterparts – permissive strategy templates (PeSTels)
for Parity games introduced in [2] – posses over classical strategies in control-
inspired applications. In particular, PeSTels allow (i) to adapt winning strategies
at runtime [2,23], and (ii) to compose different templates into new ones leading
to novel iterative and compositional synthesis techniques [3, 4, 24]. This section
investigates whether QaSTels possess similar runtime adaptability (Section 5.1)
and compositional (Section 5.2) properties.
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5.1 Dynamic Strategy Extraction from QaSTels

We first consider scenarios where the runtime operation of the controlled system,
e.g. a robot, is supplied with local preferences over moves that can only be
determined at runtime. As an example, consider a mobile robot in a smart factory
operating in the presence of (non-modeled) human operators. Here, the robot
might be equipped with a perception module which predicts the probability of
the successful completion of an action (e.g. reaching a certain work station)
within these (dynamic) obstacles. In this case, the logical control strategy can
choose the activated move from the QaSTel with the highest success probability.
More generally, given a weighted game (G,φ) with optimal QaSTel Π and a
dynamic preference function preft : E0 → [0, 1] for every t ∈ N0, we define the
Player 0 strategy π0 online (after obtaining preft in time step t) s.t.

π0(v0 . . . vt) := argmax{preft(e) | e ∈ Π(vt, ct)}, (5)

where ct is the credit value at time-step t. It follows directly from the correctness
of optimal QaSTels that π0 is winning for (G,φ).

A slightly more involved scenario occurs if edges with low preference values
are assumed to be blocked and hence should not be taken at all by the controlled
system. This can be due to a blocking static obstacle perceived by a mobile robot,
or due to an actuation failure, e.g., a faulty motor in a quad rotor, resulting in
a restricted evolution of the system and hence in the unavailability of certain
Player 0 moves in the game abstraction (which are henceforth assumed to be
annotated with preference 0). In this case, (5) changes to

π0(v0 . . . vt) := argmax{preft(e) > ϵ | e ∈ Π(vt, ct)}, (6)

for some given ϵ > 0. Unfortunately, if π0(v0 . . . vt) becomes empty, we cannot
continue to control the system with the current template. However, due to the
permissiveness of optimal QaSTels (see Theorems 3 and 4), such scenarios cannot
occur if at least one edge with the minimal activation energy is always retained.
Formally, we have the following observation.

Proposition 3. Given a weighted game graph (G = (V,E), w) with an optimal
QaSTel Π, let E∗

t := {e ∈ E0 | preft(e) < ϵ} for some t ∈ N0. If there exists no
v ∈ V s.t. minEdges(v) ⊆ E∗

t ,where

minEdges(v) := argmin{actΠ(e) | e ∈ E(v)}, (7)

then Π = computeQaSTel(G′, w, µ0) is the optimal QaSTel for G′ \ E∗
t .

It follows from Proposition 3 that whenever there exists no v ∈ V s.t.
minEdges(v) ⊆ E∗

t for all t ∈ N0, the Player 0 strategy in (6) is winning in
the original weighted game (G,φ). Furthermore, if this condition is violated at
some time point t, a recomputation of QaSTels can be triggered. As an obvious
corollary (see Appendix A.7) of the known monotonicity properties of the value
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iteration algorithm, this recomputation can be hot-started from the current op-
timal value over G, i.e.,

Π ′ := computeQaSTel(G′, w, µ0) = computeQaSTel(G′, w, actΠ). (8)

It should be noted that this dynamic recomputation of QaSTels might return
an empty winning region at some time step, in which case the dynamically
adapted strategy from (6) returns a finite play which is not winning anymore.
Intuitively, such scenarios occur when preferences and QaSTels do not interact
favorably. If preferences are due to unmodeled disturbances, such as dynamic
obstacles, there is not much one can do to prevent such blocking situations. If
additional objectives are, however, known and can be modelled as additional
quantitative or qualitative objectives over the given game graph G, one should
incorporate them into template synthesis as soon as they are available. This then
leads to compositional synthesis approaches as discussed next.

5.2 Composing QaSTels

The previous section has outlined the advantages of QaSTels for the local adap-
tation of strategies at runtime, which is in close analogy to the properties of
PeSTels [2]. Unfortunately, this section shows that QaSTels – in contrast to
PeSTels – are not composable in a straightforward manner. That is, given a
QaSTel Π for a weighted game graph (G,φ) and a QaSTel Π ′ for a different
weighted game (G,φ′) over the same graph, we cannot easily combine Π and
Π ′ into a QaSTel which is winning for the combined game (G,φ ∧ φ′). This is
due to the fact that a winning strategy for (G,φ ∧ φ′) might require infinite
memory [27].

Nevertheless, we can still extract a single (infinite-memory) winning strategy
from multiple QaSTels over mean-payoff games as long as the winning regions
of all games coincide. The resulting algorithm, given in Algorithm 1, uses the
function Combine to combine winning strategies of all games extracted from
QaSTels following the procedure given in [27, Lemma 8].

Theorem 5. Given a game graph G = (V,E) with multiple mean-payoff objec-
tives {MP(wi)}i∈[1;k], CombineQaSTel(G, {MP(wi)}i∈[1;k]) returns a winning
strategy for the game (G,

∧
i∈[1;k] MP(wi)). Furthermore, the procedure termi-

nates in time O(k · |V | · |E| ·W ), where W is the maximal weight in the game.

It should be noted that CombineQaSTel can also be used for iterative
synthesis, i.e., if a mean-payoff objective arrives, a new combined strategy can
be derived by hot-starting CombineQaSTel.

Remark 2. We remark that games with multiple energy objectives might not
always have a winning strategy, even if the winning regions of the different
energy objectives coincide.
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Algorithm 1 CombineQaSTel

Input: Game graph G = (V,E) with {MP(wi)}i∈[1;k]

Output: Winning strategy π for (G,
∧

i∈[1;k] MP(wi))

1: W = V ; actΠi = µ0 for all i ∈ [1; k]
2: (Wi, Πi)← computeQaSTel(G,wi, actΠi)
3: W ′ ←

⋂
Wi

4: while W ̸=W ′ do
5: for all e ∈ W ′ × (W \W ′) do Π(e) =∞
6: (Wi, Πi)← computeQaSTel(G,wi, actΠi)
7: W ←W ′; W ′ ←

⋂
Wi

8: πi = ExtractStrat(Πi), for all i ∈ [1; k]
9: return Combine({πi}i∈[1;k])

Remark 3. It is known that parity objectives can be translated into mean-
payoff objectives with threshold 0 over the same game graph in polynomial
time [14, Theorem 40]. It therefore follows that the combination of QaSTels
and PeSTels might require infinite memory strategies. This further implies that
CombineQaSTel can also be used to extract combined strategies in (multi-
objective) mean-payoff parity games.

6 Combining QaSTels with (bounded) PeSTels

While the previous section discussed control-inspired applications of QaSTels for
runtime-adaptability and composition of templates for purely quantitative objec-
tives, this section considers the construction of strategy templates for games with
both quantitative and qualitative objectives. As Remark 3 already shows that the
most general combination, i.e., mean-payoff-Parity games, require infinite strate-
gies in general, we cannot hope for the construction of winning templates which
are maximal for the full class of parity, and hence, ω-regular objectives over the
weighted game graphs Gw. Instead, we propose to start with qualitative strategy
templates which under-approximate the set of winning strategies for any par-
ity objective, but allow for a straight forward combination with QaSTels, and
hence for efficient incremental synthesis. These restricted qualitative templates
are based on PeSTels from [2], which we recall in Section 6.1 before formalizing
their composition with QaSTels in Section 6.2. Section 6.3 then discusses control-
inspired mixed specifications where this class of templates ensure to capture a
huge class of relevant strategies. We test the completeness and efficiency of the
resulting algorithms in Section 7.

6.1 Bounded PeSTels

Within this paper we consider PeSTels which are composed of two edge con-
ditions: (i) unsafe edges S ⊆ E0, and (ii) co-live edges D ⊆ E0. Their combi-
nation Γ = (S,D) is called a bounded PeSTel, which represents the objective
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playsΓ (G) = {ρ ∈ V ω | ∀e ∈ S : e ̸∈ ρ and ∀e ∈ D : e ̸∈ Inf(ρ)}. We say a
strategy π (for Player 0) follows Γ , denoted by (G, π) |= Γ (or simply π |= Γ
when G is clear from the context), if playsπ(G) ⊆ playsΓ (G). Intuitively, π
follows Γ if every π-play (i) never uses the unsafe edges in S, and (ii) stops using
the co-live edges in D eventually. In a qualitative game (G,Φ), a PeSTel Γ is
winning from a node v if every strategy following Γ is also winning from v.

In [2], PeSTels include a third edge condition, called live groups, which en-
sures that certain edges are taken infinitely often. We discuss in Appendix A.8,
how winning PeSTels for games (G,Φ) synthesized via the algorithms presented
in [2] can be directly bounded leading to bounded PeSTels. We refer to the
combined synthesis algorithm as computePeSTel.

Remark 4. We note that computePeSTel usually under-approximates the set
of winning plays for (G,Φ). It is however known that for co-Büchi games no
additional winning strategies can be captured by live-group templates, naturally
leading to bounded templates. Notably, the algorithms for computing winning
PeSTels in co-Büchi games, presented in [2], exhibit the same worst-case com-
putation time as standard methods for solving such (finite-state) games.

6.2 Mixed Strategy Templates (MiSTels)

Following the previous discussion, this section introduces MiSTels Λ = (S,D,Π)
as a combination of a (bounded) PeSTel Γ = (S,D) with a QaSTel Π defined
over the same weighted game graph Gw. Thereby, MiSTels concisely represent a
set of winning strategies for mixed games (G,Φ∧φ) which contain a quantitative
objective Φ and a qualitative objective φ. A Player 0 strategy π is said to follow
the MiSTel Λ over Gw if it follows both Γ and Π over Gw.
Conflict-free MiSTels. Given any combination of PeSTels and QaSTels, their
direct combination might result in a MiSTel for which no strategy exists that
follows it. As an example consider the discussion from Section 5.1 on the runtime
adaptation of a strategy which follows a QaSTel but at the same time avoids
taking unavailable edges. Given a PeSTel (S,D), the edge set S can directly be
interpreted as the set of unavailable edges, which – in contrast to the case dis-
cussed in Section 5.1 – does not change and is known a priori. Similarly, the set of
D collects all edges that eventually become unavailable. Following Proposition 3,
we obtain the existence of a strategy following a MiSTel if minEdges(v) ̸⊆ S ∪D
for all v ∈ V . If a MiSTel has this property, we call it conflict free. Similar
to Proposition 1, one can extract a strategy following a conflict-free MiSTel by
picking an unconstrained edge (i.e. e /∈ S∪D) with the smallest activation value
at every node.

Proposition 4. Given a weighted game graph Gw with a conflict-free MiSTel
Λ = (S,D,Π), a positional strategy following Λ can be extracted in time O(|E|).

Winning MiSTels. We say that the MiSTel Λ is winning in the mixed game
(G,Φ ∧ φ) from a node v if all strategies π that follow Λ are winning from
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Algorithm 2 computeMiSTel(G,w,Φ)

Input: Mixed game (G = (V,E) , φ ∧ Φ) with φ = MP(w) or En(w)
Output: winning region W, winning conflict-free MiSTel Λ
1: actΠ = µ0

2: (W, C, Λ)← findConf(G,w,Φ,Π)
3: while C ≠ ∅ do
4: Φ← Φ ∧ Safety(W)
5: for all e ∈ C do Π(e) =∞
6: (W, C, Λ)← findConf(G,w,Φ,Π)

7: return (W, Λ)

8: procedure findConf(G,w,Φ,Π)
9: (WΦ, (S,D))← computePeSTel(G,Φ)

10: (Wφ, Π)← computeQaSTel(G,w, actΠ)
11: W ←WΦ ∩Wφ

12: C = ∪v∈W{minEdges(v) | minEdges(v) ⊆ S ∪D}
13: return (W, C, (S,D,Π))

v in both the quantitative game (G,φ) and the qualitative game (G,Φ). In
order to synthesize a winning MiSTel for a given mixed game (G = (V,E) , φ ∧
Φ), we can therefore iteratively construct winning PeSTels and QaSTels and
remove all conflicts from their joint winning region. An efficient way to do so is
formalized in Algorithm 2. After QaSTel synthesis is initialized with µ0, winning
PeSTels and QaSTels are computed (Lines 9 and 10) and conflicts in their joint
winning region are detected (Line 12). If no conflict is detected, the algorithm
directly terminates. Otherwise, conflicts are resolved by (i) adding an additional
safety requirement to the quantitative specification Φ (Line 4), and (ii) increasing
the edge-weight of conflicting edges, i.e., edges in minEdges(v) ⊆ S ∪ D, to ∞
(Line 5). After this, PeSTels and QaSTels are recomputed to resolve conflicts,
which might result in new ones. If no more conflicts are generated, the algorithm
terminates. The resulting MiSTel is winning and conflict free, as formalized next.

Theorem 6. Let G = (G,φ ∧ Φ) be a mixed game with φ = MP(w) or En(w)
and Φ a qualitative objective. Then, if (W, Λ) = computeMiSTel(G,w,Φ), it
holds that Λ is a conflict-free winning MiSTel from W.

Remark 5. We note that the iterative computation of PeSTels and QaSTels
in Algorithm 2 can be hot-started, which makes computeMiSTel more effi-
cient. For QaSTels, the correctness of hot-starting follows from Eq. (8). Notably,
computePeSTel can also be hot-started if specifications are added [2, Alg.4].

Incremental MiSTel Synthesis. Surprisingly, Algorithm 2 can directly be
extended to incremental MiSTel synthesis. That is, given an already computed
winning MiSTel Λ = (S,D,Π) with winning region W for the mixed game
G = (G,φ ∧ Φ), Λ can be refined to a new winning MiSTel Λ′ = (S′, D′, Π ′)
for the mixed game G = (G,φ ∧ Φ ∧ Φ′) with winning region W ′ ⊆ W if a new
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quantitative objective Φ′ arrives. For this, one would use Algorithm 2 for the
combined quantitative objective Φ ∧ Φ′ and hot-starts both computePeSTel
and computeQaSTel with (S,D) and Π from the already existing MiSTel Λ.

Remark 6. We recall from Section 5.2 that adding additional quantitative ob-
jectives only allows to extract new winning strategies (and no templates) if all
quantitative objectives are mean-payoff objectives. Nevertheless, this clearly can
also be incorporated in an iterative version of Algorithm 2.

6.3 Applications of MiSTels

While MiSTels can be applied to any mixed game, the class of winning strate-
gies they capture might be a quite restricted (possibly empty) subset of all
available strategies. This can (i) downgrade the adaptability of strategy choices
during runtime and (ii) might lead to an empty winning region in incremental
or compositional synthesis approaches. MiSTels therefore have a higher poten-
tial whenever they capture a large set of winning strategies. One such example
are co-Büchi games, where it is known that PeSTels are naturally bounded. Af-
ter discussing how specifications commonly used in CPS applications reduce to
co-Büchi games in this section, we investigate this instance further in Section 6.4.
LTLf Specifications. LTLf is a fragment of linear temporal logic (LTL) where
system properties are evaluated over finite traces only, which has gained popular-
ity in robotic applications over the last decade [13]. Specifications given in LTLf

can be translated into deterministic finite automata which can be composed with
a weighted game, adding a reachability objective to it. The resulting reachabil-
ity objective can then be translated into a co-Büchi objective by removing all
outgoing transitions from target states, adding self-loops to them and adding all
states which are not a target state into the co-Büchi region.
Uniform Attractivity. If one manipulates the graph as outlined before, one
can show that for every winning strategy π exists a time bound k ∈ N s.t. all
plays ρ compliant with π will never leave the set of target states again after k
time steps, i.e., ∀i ≥ k. ρ[i] ∈ T 2. Such specifications are called uniform attrac-
tivity specifications and are used to translate classical stability objectives into
formal specifications. Formally, the computation of winning strategies for general
uniform attractivity games (without manipulating the game graph) are solved by
first computing the winning set of the safety objective Wsafe := Safety(T ) and
then solving the co-Büchi game (G, co-Büchi(Wsafe)). It is therefore not hard
to see, that PeSTels for uniform attractivity games are also naturally bounded.
Adding Quantitative Objectives. Due to the fact that every winning strategy
comes with a uniform bound on when the target set is reached, the above in-
stances of co-Büchi games are naturally combined with qualitative energy objec-
tives with fixed initial credit. This is in contrast to ‘classical’ co-Büchi objectives
which are more naturally combined with mean-payoff objectives, ensuring that
strategies are optimal in the limit even if they deviate for finite time durations.
2 For classical co-Büchi games, such a uniform bound over all plays does in general

not exist (see [16] for an example).
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6.4 Mean-Payoff co-Büchi Games

Mean-payoff co-Büchi games have been already studied in [11] and will there-
fore be used to benchmark our prototype implementation of MiSTel synthesis
against the state of the art algorithm, called MPCoBuechi, in Section 7. We
note that these results carry over to control-inspired applications of MiSTels
discussed before, as QaSTel synthesis coincides for energy and mean-payoff ob-
jectives and reachability and uniform attractivity simply utilize the (bounded)
PeSTel synthesis algorithm specialized for co-Büchi games called coBüchiTemp
from [2, Alg.2].
Complexity. Using coBüchiTemp from [2, Alg.2] instead of computePeSTel
in computeMiSTel (Algorithm 2), the complexity of MiSTel synthesis for
mean-payoff co-Büchi games reduces to O(n2m + nmW ), where n = |V |,
m = |E|, and W is the maximum weight in w (see Corollary 3 in Appendix A.11).
In comparison, the worst-case computation time of MPCoBuechi is O(nmW ) [11,
Theorem 5] and, hence, lower. We however note that we achieve the same worst-
case complexity when W ≥ n, which is very often the case.
Completeness. We note that computeMiSTel is not complete. First of
all, the bounded PeSTel computed by coBüchiTemp does not capture win-
ning strategies for instances in which Player 1 (unexpectedly) helps Player 0
and is therefore already incomplete (see [2] for details). In addition, con-
flicts with co-Büchi nodes are removed immediately for conflict resolution in
computeMiSTel, while they could be used by a strategy finitely often. This
leads to a further potential under-approximation of the winning region, as illus-
trated in the example game depicted in Figure 2. Here, coBüchiTemp outputs
the co-live edges denoted by orange dashed lines. Further, the activation energy
of the edges (a, b) and (a, a) are 0 and 1 respectively, and hence, the edge (a, b)
is a conflict by definition. Hence, in Algorithm 2, the edge (a, b) will be assigned
the value ∞ while resolving the conflict, making the node a losing in the next
iteration. However, we observe that all the nodes are winning for Player 0.

a b c

-1

0

-1

0

-1

0

Figure 2: Mean-payoff co-Büchi
game with co-Büchi({a, c}) .

We note that the state-of-the-art al-
gorithm by Chatterjee et al. [11] is in-
stead complete. Our experimental results
presented in Section 7 however show
that the winning region computed by
computeMiSTel coincides with the full
winning region computed by MPCoBuechi
for more then 90% of the considered
benchmark instances.

7 Empirical Evaluations

This section aims to highlight the advantages of strategy templates for games
with qualitative (and quantitative) objectives. However, benchmarking QaSTel
(and MiSTel) synthesis as well as their adaptability and compositional properties
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Figure 3: Plots summarizing the experimental evaluations. Bigger figures can be
found in the appendix.

is difficult for two reasons. First, to the best of our knowledge, there are no bench-
mark suites that include real-world applications with combined quantitative and
qualitative objectives. Second, while there exist algorithms for mean-payoff par-
ity games, we are not aware of any implementation or benchmark-based evalua-
tion of these algorithms. To address this, we build new benchmark suites based
on the SYNTCOMP benchmark [19] and implement the MPCoBuechi algorithm
from [11] (discussed in Section 6.4) to benchmark our Java-based prototype im-
plementation QuanTemplate of computeMiSTel against it.

Experimental Setup. We built a new benchmark suite from the SYNTCOMP
benchmark [19] by (a) translating SYNTCOMP parity games into mean-payoff
games using standard techniques [21], and (b) adding co-Büchi objectives to the
qualitative games from (a) by randomly choosing avoidance regions (i.e., the
set of co-Büchi nodes which a play is not allowed to visit infinitely often). For
practical reasons, we imposed limits of 5 × 105 nodes and 105 energy values on
the edges. As a result, our benchmark suite comprises 245 mean-payoff game
graphs. All experiments were executed on a 32-core Debian machine equipped
with an Intel Xeon E5-V2 CPU (3.3 GHz) and up to 256 GB of RAM.

Dynamic Strategy Adaptation. We have conducted experiments to evaluate
the robustness of QaSTels to the unavailability of edges due to additional edge
preferences used for dynamic strategy extraction at runtime. As discussed in
Section 5.1, QaSTels do not need to be adapted if the edges with the minimum
activation energy are still available. To evaluate how likely QaSTels need to be
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recomputed we randomly removed edges from the game graphs in our benchmark
suite and measured the average number of deletions required until a minimum
activation edge was removed for any node. We ran QuanTemplate on each graph,
incrementally deleting randomly selected edges until a change in the optimal
value occurred. This process was repeated 10 times per graph, and we computed
the average number of edge deletions needed to trigger this change. Fig. 3a
illustrates the trend between the proportion of game graphs in which the optimal
value changes against the proportion of Player 0 edges removed from them. The
trend clearly shows that in practice, it is very unlikely that minimum activation
edges are deleted even after removing a significant number of edges from the
graph. This establishes the efficiency of QaSTels to produce robust strategies.

Incremental Synthesis. We have benchmarked our prototype implementation
QuanTemplate of computeMiSTel for mean-payoff co-Büchi games against our
implementation of the MPCoBuechi algorithm [11]. The experiment starts by pro-
viding both algorithms only with a mean-payoff game from our benchmark suite.
We then add 5 co-Büchi objectives incrementally. To evaluate the dependence of
runtimes on the co-Büchi objectives, we run this experiment thrice, with varying
amounts of additional nodes added to the avoidance region in every incremental
step: (i) 0.4% (blue circles in Fig. 3b), (ii) 6% (red triangles in Fig. 3b) and
(iii) 12% (green stars in Fig. 3b) leading to (i) 2%, (ii) 30% and (iii) 60%
avoidance region in the final iteration of incremental synthesis. To compare the
performance of QuanTemplate and MPCoBuechi, Fig. 3b shows (i) the ratio of
average runtimes of MPCoBuechi vs QuanTemplate to complete the 5 incremental
synthesis steps outlined above (y-axis in Fig. 3b), against (ii) the running times
of MPCoBuechi over the original mean-payoff game without co-Büchi objectives
(x-axis in Fig. 3b).

The plot shows that when the instances are very simple (resulting in a low
initial runtime of MPCoBuechi), QuanTemplate may be slow in the recomputa-
tion on additional co-Büchi objectives. However, as the graphs get more com-
plex, QuanTemplate is magnitudes faster than MPCoBuechi in recomputing the
winning regions on the fly. In fact, we see that QuanTemplate is around 10000
times faster on the most complex instances. This demonstrates the utility of our
approach avoiding the need of recomputations from scratch.

Completeness. We conducted experiments to quantify the loss of completeness
(in terms of the size of the winning region) of computeMiSTel compared to
MPCoBuechi. For each of the 245 mean-payoff game graphs in our benchmark
suite, we randomly selected (i) 25%, (ii) 50%, and (iii)75% of the nodes and de-
fined them as the avoidance region in the respective mean-payoff co-Büchi game.
QuanTemplate could not compute the complete winning region in (i) 10, (ii) 30
and (iii) 28 instances of games, respectively. This shows that QuanTemplate
computes the full winning region for over 90% of the considered games.

To further investigate the root cause of incompleteness, we evaluated the
number of rounds of conflict resolutions required by QuanTemplate for each in-
stance. In Fig. 3c, we plot the percentage of instances requiring a certain number
of conflict resolution rounds. In Fig. 3d, we plot the percentage of incomplete
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instances against the number of conflict resolution rounds required to solve the
respective instance. Together the two plots present the relationship between the
number of game graphs for which QuanTemplate was unable to synthesize a win-
ning strategy and the number of iterations required to resolve conflicts. Fig. 3d
indicates a clear trend: as the number of iterations increases, the likelihood of
failure to synthesize a winning strategy also increases. However, as noted in
Fig. 3c, the number of iterations required in practice remains low. This observa-
tion explains the low number of incomplete instances (less than 10%, as noted
above), and supports the claim that while our algorithm may be incomplete in
the worst case, it is able to synthesize winning strategies in most scenarios.
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A Missing Proofs

A.1 Proof of Proposition 1

Proposition 1. Given a weighted game graph Gw s.t. G = (V,E) with a QaSTel
Π, a positional strategy π following Π can be extracted in time O(|E|). Let
ExtractStrat(G,w,Π) be the procedure extracting this strategy.

Proof. Consider the positional strategy π such that for every v ∈ V0, π(v) is
an edge with the smallest activation value in Π, i.e., π(v) = argmin{actΠ(e) |
e ∈ E(v)}. We will show that π follows Π in every weighted game with weight
function w. It is enough to show that (G, π) ⊨c Π for every c ∈ N.

Let c ∈ N and consider a π-play ρ = v0v1 · · · . For each i ∈ N, let ei =
(vi, vi+1) and ci = c + w(ρ[0; i]) be the edge and the credit after i-th step. Let
k ∈ N∞ be the smallest index such that vk ∈ V0 and ek /∈ Π(vk, ck). Then, it is
enough to show that Π(vk, ck) = ∅. Suppose e ∈ Π(vk, ck), then actΠ(e) ≤ ck.
As π(vk) = ek is the edge with the smallest activation value at vk, it holds that
actΠ(ek) ≤ actΠ(e) ≤ ck and hence, ek ∈ Π(vk, ck). This contradicts the choice
of k and hence, Π(vk, ck) = ∅. ⊓⊔

A.2 Proof of Theorem 2

Theorem 2. Given a weighted game graph Gw, the optimal QaSTel Π is win-
ning in both the mean-payoff game (G,MP(w)) and the energy game (G,Enc(w))
for every initial credit c ∈ N.

We will show the proof for energy games and mean-payoff games separately
in the following two lemmas.

Lemma 2. Given a game graph G = (V,E) with weight function w, the optimal
QaSTel Π is winning in the energy game (G,Enc(w)) for every initial credit
c ∈ N.

Proof. Consider an energy game (G,Enc(w)) for some initial credit c ∈ N, and
let u0 ∈ V be a node in the winning region. We need to show that for every
strategy π following Π is winning from u0, i.e., every π-play from u0 is winning.
As every such π-play from u0 is a (Π, c)-play from u0, it is enough to show that
every (Π, c)-play from u0 is winning.

Let ρ = u0u1 · · · be a (Π, c)-play from u0. For each i ∈ N, let us denote by
ei = (ui, ui+1) the edge taken at step i, and the credit at the beginning of step
i by ci = c+ w(ρ[0; i]). By definition of Π, there exists a k ∈ N∞ such that for
all i ∈ [0; k] with ui ∈ V0, ei ∈ Π(ui, ci), and if k ̸= ∞, then uk+1 ∈ V0 with
Π(uk+1, ck+1) = ∅.

Suppose k ̸= ∞. As ek ∈ Π(uk, ck), by definition of Π, ck ≥ optE(ek). Hence,
there exists a Player 0 strategy π such that every playsπ(G, ek) is winning for
initial credit ck. That means, every play that starts with ek and then follows π
is winning for initial credit ck. This implies every π-play from uk+1 is winning
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for initial credit ck − w(ek) = ck+1. Consider the strategy π′ such that for
every history H ∈ V ∗V0, π′(H) = π(uk+1H). Then, by construction, every play
that starts with the edge e′k+1 = π(uk+1) (this is well-defined as uk+1 ∈ V0)
and then follows π′ is winning for initial credit ck+1. Thus, by definition of
optE, ck+1 ≥ optE(e′k+1) = actΠ(e′k+1), and hence e′k+1 ∈ Π(uk+1, ck+1). This
contradicts the assumption Π(uk+1, ck+1) = ∅. Hence, k = ∞.

As k = ∞, it holds that for every i ∈ N, ei ∈ Π(ui, ci), and hence, by
definition of QaSTels, ci ≥ 0. Therefore, ρ is winning. ⊓⊔
Lemma 3. Given a game graph G = (V,E) with weight function w :
E → [−W ;W ], the optimal QaSTel Π is winning in the mean-payoff game
(G,MP(w)).

Proof. Let u0 ∈ W(G,MP(w)) be a node in the winning region and let π be a
strategy that follows Π in mean-payoff game (G,MP(w)). Then, it holds that
π ⊨c Π for some c ≥ W · |V |. We need to show that every π-play from u0 is
winning.

It is well-known that the winning region of mean-payoff games is same
as the winning region of energy games with unknown initial credit [9],
i.e., W(G,MP(w)) = W(G,En(w)). Furthermore, as W(G,En(w)) =
W(G,Enc(w)), we have u0 ∈ W(G,Enc(w)). Let ρ be a π-play from u0. As
π ⊨c Π, by Lemma 2, ρ is winning in the energy game (G,Enc(w)). That
means, for each i ∈ N, c+ weight(ρ[0; i]) ≥ 0. This implies that for each i ∈ N,
avg(ρ[0; i]) = w(ρ[0;i])

i ≥ −c
i . Thus, lim supi→∞ avg(ρ[0; i]) ≥ limi→∞

−c
i = 0,

and hence, ρ is winning in the mean-payoff game (G,MP(w)). ⊓⊔

A.3 Proof of Theorem 3

Theorem 3. Given a weighted game graph Gw, the optimal QaSTel Π is max-
imally permissive in the energy game (G,Enc(w)) for every c ∈ N.

Proof. Consider an energy game (G,Enc(w)) for some initial credit c ∈ N and
let π be a winning strategy. It is enough to show that for every π-play is a
(Π, c)-play.

Let ρ = u0u1 · · · be a π-play. For each i ∈ N, let ei = (ui, ui+1) be the edge
taken at step i, and the credit at the beginning of step i by ci = c+w(ρ[0; i]) ≥ 0.
For every i ∈ N, let πi be a Player 0 strategy such that for every history H,
πi(H) = π(ρ[0; i]H).

Suppose ρ is a winning play, then, by construction, every πi-play from ui+1

is winning for initial credit ci+1. This implies that every play that starts with
ei and then follows πi is winning for initial credit ci+1 − w(ei) = ci. Hence, by
definition of optE, ci ≥ optE(ei) = actΠ(ei), and hence, ei ∈ Π(ui, ci) for all
i ∈ N. Therefore, ρ is a (Π, c)-play.

Now, suppose ρ is not winning. As π is a winning strategy and ρ is a π-play, it
holds that u0 ̸∈ W(G,Enc(w)). This implies, there is no winning strategy from
u0 for initial credit c. This means, for every edge e ∈ u0E, there is no strat-
egy π′ such that playsπ′(G, e) ⊆ Enc(w), and hence, optE(e) > c. Therefore,
Π(u0, c) = ∅, and hence, ρ is a (Π, c)-play. ⊓⊔
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A.4 Proof of Lemma 1

Lemma 1. Let (G,MP(w)) be a mean-payoff game with finite memory winning
strategy π. Then there exists a weight bound Bπ ∈ N such that for every π-play
ρ from a node v ∈ W(G,MP(w)), it holds that w(ρ[0; i]) ≥ −Bπ for all i ∈ N.

Proof. Let π be a winning strategy with finite memory in the mean-payoff game
(G,MP(w)). Let v ∈ W(G,MP(w)) be a winning node and let ρ be a π-play
from v.

Consider the game graph Gπ = (V ′, E′) induced by the strategy π. Then,
every simple cycle reachable from v in the game graph Gπ has a non-negative
weight, the π-play from v that just loops in the cycle with negative weight has
a negative limit average weight. Moreover, as ρ is a play in Gπ, after an initial
acyclic part of length < |V ′|, the play ρ only visits simple cycles of Gπ. As all
such cycles have non-negative weight, the total weight of every prefix of ρ must
be at least −2 |V ′| · W , i.e., w(ρ[0; i]) ≥ −2 |V ′| · W for all i ∈ N. As v0 and ρ
are arbitrary, for weight bound Bπ = 2 |V ′| ·W , the lemma holds. ⊓⊔

A.5 Proof of Theorem 4

Theorem 4. Given a weighted game graph Gw, the optimal QaSTel Π is f-
maximally permissive in the mean-payoff game (G,MP(w)).

Proof. Let π be a winning strategy with finite memory in the mean-payoff game
(G,MP(w)). We need to show that every π ⊨c Π for some c ≥ W · |V |, where
W is the maximum weight in the game.

By Lemma 1, there exists a weight bound Bπ ∈ N such that for every π-play
ρ from a winning node v ∈ W(G,MP(w)), it holds that w(ρ[0; i]) ≥ −Bπ for
all i ∈ N. Let c = max{W · |V | , Bπ}. Since W(G,MP(w)) = W(G,Enc(w)) (as
discussed in the proof of Lemma 3), it holds that for every π-play ρ from a node
v ∈ W(G,Enc(w)), we have c + w(ρ[0; i]) ≥ Bπ + w(ρ[0; i]) ≥ 0 for all i ∈ N.
Hence, by definition, π is a winning strategy in the energy game (G,Enc(w)).
Then, by Theorem 3, π ⊨c Π. ⊓⊔

A.6 Proof of Theorem 5

Theorem 5. Given a game graph G = (V,E) with multiple mean-payoff objec-
tives {MP(wi)}i∈[1;k], CombineQaSTel(G, {MP(wi)}i∈[1;k]) returns a winning
strategy for the game (G,

∧
i∈[1;k] MP(wi)). Furthermore, the procedure termi-

nates in time O(k · |V | · |E| ·W ), where W is the maximal weight in the game.

Proof. Let Wj and Wj
i be the corresponding region, and Πj

i be the correspond-
ing QaSTel in the j-th iteration of the while loop. As Wj

i is a winning region com-
puted by computeQaSTel, there is no Player 1 edge from Wj

i to outside of Wj
i .

Hence, all the edges from W j to outside of Wj are Player 0 edges. Furthermore,
since in every iteration, we are hot-starting the procedure computeQaSTel
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from previous iteration by making activation values of some of these Player 0
edges ∞, the winning region Wj+1 is a subset of W j . Hence, the while loop
terminates within |V | iterations. As the algorithm only hot-starts the value it-
eration algorithm for each objective, the time complexity of the algorithm is
O(k · |V | · |E|).

Now, suppose k is the last iteration. Then, as Πk
i is obtained from

computeQaSTel(G,wi, ·), it holds that Πk
i is winning from Wk in the mean-

payoff game (G,MP(wi)). Hence, every strategy πi obtained in the algorithm
after termination of while loop is a winning strategy from Wk in the mean-payoff
game (G,MP(wi)). Then, by the property of Combine, Combine(π1, . . . , πk)
is a winning strategy from Wk in the mean-payoff game (G,

∧
i∈[1;k] MP(wi)).

Hence, it is enough to show that Wk is the winning region W ′ of the mean-payoff
game (G,

∧
i∈[1;k] MP(wi)).

By the previous argument, Wk ⊆ W ′. Now, let us show using induction on
j ∈ [1; k] that Wj ⊇ W ′. For base case j = 1, as intersection of winning regions
of each mean-payoff objective contains the winning region of their conjunction,
it holds that W1 ⊇ W ′. Now, suppose Wj ⊇ W ′ for some j ∈ [1; k − 1]. Since
removing edges going out of winning region does not change the winning region,
making activation values of some of these edges ∞ does not change the winning
region. Hence, Wj+1 ⊇ W ′. Therefore, Wk = W ′. ⊓⊔

A.7 Proof of Corollary 2

Corollary 2. Given the premises of Prop. 3, it holds that the QaSTel Π ′ :=
computeQaSTel(G′, w, µ0) = computeQaSTel(G′, w, actΠ) is optimal for
G′.

Proof. Let the operator for edge-based value iteration for game (G′,En(w)) be
O′

E , and let optE and optE′ be the edge-optimal value functions for (G,En(w))
and (G′,En(w)) respectively. As the activation function of the optimal QaSTel
is same as the edge-optimal value function, it is enough to show that the fixed
point computation of O′

E starting from optE gives the function optE′.
Let us first shows that optE(e) ≤ optE′(e) for all e ∈ E\{e∗}. Let e ∈ E\{e∗}

be an arbitrary edge. If optE′(e) = ∞, then optE(e) ≤ optE′(e) trivially holds.
Suppose optE′(e) ̸= ∞, then by definition, for every initial credit c ≥ optE′(e),
there exists a Player 0 strategy πc with plays(G′, πc) ⊆ Enc(w). As e∗ ∈ E0, the
strategy πc is also a well-defined Player 0 strategy in game graph G. Hence, for
every initial credit c ≥ optE′(e), we have plays(G, πc) ⊆ Enc(w), which implies
optE(e) ≥ optE′(e).

As optE′ is the least fixed point of the monotonic operator O′
E and optE ≤

optE′, by the Knaster-Tarski theorem, the fixed point computation of O′
E start-

ing from optE gives the function optE′. ⊓⊔

A.8 Bounding PeSTels

Given a game graph G = (V,E), PeSTels (as defined in [2]) contain three types
of edge templates: (i) unsafe edges S ⊆ E0, (ii) co-live edges D ⊆ E0 and (iii)
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live groups Hℓ ⊆ 2E0 . Their combination Γ = (S,D,Hℓ) is called a PeSTel, which
represents the objective playsΓ (G) = {ρ ∈ V ω | ∀e ∈ S : e ̸∈ ρ and ∀e ∈ D :
e ̸∈ Inf(ρ) and ∀H ∈ Hℓ : src(H) ∩ Inf(ρ) ̸= ∅ ⇒ H ∩ Inf(ρ) ̸= ∅}, where
src(H) denotes the source nodes of the edges in H.

Within this paper, we restrict our attention to PeSTels which only consist
of safety & co-live templates and call such PeSTels bounded as constraint edges
can never be taken unboundedly.

Given a quantitative objective Φ which can be modelled as a parity objective
over G, one can compute a bounded PeSTel Γ = (S,D) for (G,Φ) by using
the algorithm ParityTemplate from [2, Alg.3] to compute a (full) PeSTel
Γ̃ = (S,D,Hℓ) first. This PeSTel Γ̃ can then be bounded into a bounded template
Γ by adding all non-live outgoing edges of a live-group node, i.e. {(q, q′) /∈
H ∪ S|(q, ·) ∈ H} to D, and then setting Hℓ := ∅.

A.9 Proof of Proposition 4

Proposition 4. Given a weighted game graph Gw with a conflict-free MiSTel
Λ = (S,D,Π), a positional strategy following Λ can be extracted in time O(|E|).

Proof. By the definition of quantitative conflict-freeness, for every node v ∈ V0,
there is an edge e ∈ minEdges(v) that is neither colive nor unsafe. With this, let
us define a positional strategy π such that for every node v ∈ V0, π(v) is an edge
e ∈ minEdges(v) that is neither colive nor unsafe. Then, by the definition colive
edges, π follows the PeSTel (S,D). Furthermore, by the proof of Proposition 1,
π also follows the QaSTel Π. Therefore, π follows the mixed template Λ. ⊓⊔

A.10 Proof of Theorem 6

Theorem 6. Let G = (G,φ ∧ Φ) be a mixed game with φ = MP(w) or En(w)
and Φ a qualitative objective. Then, if (W, Λ) = computeMiSTel(G,w,Φ), it
holds that Λ is a conflict-free winning MiSTel from W.

Proof. Let Λ = (S,D,Π). The template Λ is trivially conflict-free due to the
while loop in the algorithm. Let after i-th iteration of the while loop, Φi be the
qualitative objective, (Si, Di) be the PeSTel obtained, and Πi be the QaSTel
obtained. Moreover, let Wi

Φ and Wi
φ be the corresponding regions after the i-th

iteration. For soundness, we need to show that for every i ≥ 0, Λi is a winning
mixed template from Wi = Wi

Φ ∩Wi
φ in game G.

Fix some i ≥ 0. Let u ∈ Wi and let π be a strategy following Λi, i.e.,
(G, π) ⊨c Πi for some c ≥ W · |V | and (G, π) ⊨ (Si, Di). By soundness of
computePeSTel, π is winning from u for objective Φi. As in each iteration,
we are just adding additional safety objectives to Φ, π is also winning from u
for objective Φ. Furthermore, as PeSTels only marks Player 0’s edges as unsafe
or co-live, the conflict edges only belong to Player 0. Hence, by Corollary 2, π
is winning from u for objective φ. So, π is a strategy that does not use conflict
edges and is winning from u for objective φ. In total, π is winning from u for
both objectives Φ and φ, and hence, is winning from u in game G. ⊓⊔
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A.11 Proof of Corollary 3

Corollary 3. Given a mean-payoff co-Büchi game (G,MP(w)∧co-Büchi(T )), if
(W, Λ) = computeMiSTel(G,w, co-Büchi(T )), then Λ is a conflict-free win-
ning mixed template from W. Furthermore, the procedure terminates in time
O(n2m+nmW ), where n = |V |, m = |E|, and W is the maximum weight in w.

Proof. As the soundness directly follows from Theorem 6, we only need to show
the complexity. We know that each round of while loop uses at most one call
to coBüchiTemp and one call to computeQaSTel. Furthermore, if the win-
ning region does not change in an iteration, then coBüchiTemp need not be
called as the qualitative objective remains the same. Then coBüchiTemp will
be called at most n times, which takes time O(n2m) in total. Moreover, since
we are hot-starting the computeQaSTel algorithm, in total, the time taken
by computeQaSTel across all iterations is O(nmW ). Hence, the algorithm
terminates in time O(n2m+ nmW ). ⊓⊔

B Plots from the experiments
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(c) Rounds of conflict resolution
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(d) Incompleteness of QuanTemplate

Figure 4: Plots summarizing the experimental evaluations.


