Synthesizing Efficiently Monitorable Formulas in
Metric Temporal Logic

Ritam Raha''2, Rajarshi Roy?, Nathanaél Fijalkow?, Daniel Neider®°, and
Guillermo A. Pérez!

! University of Antwerp, Flanders Make, Belgium
2 LaBRI, University of Bordeaux, Bordeaux, France
3 Max Planck Institute for Software Systems, Kaiserslautern, Germany
4 Technical University of Dortmund, Germany
Center for Data Science and Security, University Alliance Ruhr, Germany

Abstract. In runtime verification, manually formalizing a specification
for monitoring system executions is a tedious and error-prone process. To
address this issue, we consider the problem of automatically synthesizing
formal specifications from system executions. To demonstrate our ap-
proach, we consider the popular specification language Metric Temporal
Logic (MTL) which is particularly tailored towards specifying temporal
properties for cyber-physical systems (CPS). Most of the classical ap-
proaches for synthesizing temporal logic formulas aim at minimizing the
size of the formula. However, for efficiency in monitoring, along with the
size, the amount of “lookahead” required for the specification becomes
relevant, especially for safety-critical applications. We formalize this no-
tion and devise a learning algorithm that synthesizes concise formulas
having bounded lookahead. To do so, our algorithm reduces the synthesis
task to a series of satisfiability problems in Linear Real Arithmetic (LRA)
and generates MTL formulas from their satisfying assignments. The re-
duction uses a novel encoding of a popular MTL monitoring procedure
using LRA. Finally, we implement our algorithm in a tool called TEAL
and demonstrate its ability to synthesize efficiently monitorable MTL
formulas in a CPS application.

1 Introduction

Runtime verification is a well-established method for ensuring the correctness
of cyber-physical systems during runtime. Techniques in runtime verification
are known to be more rigorous than conventional testing while not being as
resource-intensive as exhaustive formal verification [20]. In the field of runtime
verification, among other techniques, monitoring system executions against for-
mal specifications during runtime is a widely used one. Over the years, nu-
merous monitoring techniques have been proposed for a variety of specification
languages [28,23,21,7].

In this work, we focus on Metric Temporal Logic (MTL) [37]—a specifica-
tion language popularly employed for monitoring cyber-physical systems [29,41].

2 Raha et al.

MTL is a real-time extension of Linear Temporal Logic (LTL) [49] augmented
with timing constraints for temporal operators. MTL specifications are often
easy to interpret due to their resemblance to natural language and, thus, also
find applications in Artificial Intelligence [56]. While there are many possible
semantics of MTL (e.g., discrete, dense-time pointwise, etc. [48]), we employ
the dense-time continuous semantics as it is more natural and general than the
counterparts [9,4]. We expand on MTL and other prerequisites in Section 2.

Virtually all verification techniques for MTL rely on the availability of a
formal specification. However, manually writing specifications is a tedious and
error-prone task [1]. Synthesizing functional, correct, and interpretable specifi-
cations that precisely express the design requirements has been one of the major
challenges in the adoption of formal techniques for verification [12,53].

To tackle the lack of formal specifications, there have been efforts to auto-
matically synthesize specifications from system executions. Most of the exist-
ing works have targeted specification languages such as Linear Temporal Logic
(LTL) [16,46,50] and Signal Temporal Logic (STL) [3,39,43,54], with few works
for MTL [30,56]. Many of the works tend to synthesize specifications that are
concise in size. Concise specifications are preferred over large ones because, based
on the principle of Occam’s razor, they are easier for humans to understand [52].

However, conciseness is not the only measure of interest for specifications,
especially in the context of online monitoring. In online monitoring, specifically
in stream-based runtime monitoring, a monitor reads an execution as a stream
of data and verifies if a given specification is invariant (i.e., holds at all time
points) in the execution. Many stream-based monitors [27,32,38] support MTL
formulas. Typically, such monitors produce a stream of (Boolean) verdicts with
some “latency”, which depends on the lookahead of the formula. The lookahead
required for an MTL formula is often formalized as its future-reach [29,31], which
is the amount of time required to determine its satisfaction at any time point.

With the aim of reducing the latency for efficient online monitoring, we focus
on automatically synthesizing MTL specifications based on two regularizers, size
and future-reach. As input data, we rely on a sample S consisting of executions
of a system that are observed for a finite duration. We consider the sample to
be partitioned into a set P of positive (or desirable) executions and a set N of
negative (or undesirable) executions.

We now formulate the central problem of synthesizing MTL formulas as
follows: given a sample S = (P, N) and a future-reach bound K, synthesize a
minimal size MTL formula ¢ that (i) is globally-separating for S, in that ¢ holds
at all time points in the positive executions and does not hold at some time point
in the negative executions, and (ii) the future-reach of ¢ is smaller than K. The
property of being globally-separating for S ensures that prospective formula
is invariant in the desirable executions and not in the undesirable executions, as
is typically preferred in specifications for online monitoring [11]. We expand on
the problem formulation in Section 3.

Also, interestingly, without a future-reach bound, the most concise MTL
formula that can be synthesized can have a large future-reach value, increasing

Synthesizing Efficiently Monitorable Formulas in MTL 3

the latency required for online monitoring. To illustrate this, assume that we
observe some simulations of an autonomous vehicle. During the simulations, we
sample executions (shown below) of the vehicle every second for six seconds. We
classify them as positive (denoted using w;’s) or negative (denoted using v;’s)
based on whether the vehicle encountered a collision or not.

0 12 3 4 5

ui: {p,q} {p} {4} {p.q} {p} {p}
ug: {q} {} {a} {p} {p}{p.¢}
vi: {p} {¢¢ 4 & { {3
va: {p} {p,a} {p} {} {p} {}

In the executions, we use p to denote that there is no obstacle within a particular
unsafe distance ahead of the vehicle and ¢ to denote that the vehicle’s brake is
triggered. Our setting considers executions to be continuous. Thus, to ensure
continuity of execution, in the above example, if p occurs at time point ¢, we
interpret it as p holding during the entire interval [¢t, ¢+ 1). We also assume that
the executions last up to a final time point 7" which is 6 for this example. Thus,
for the execution wuy, p holds in the intervals [0,2) and [3,6).

In the sample, a minimal globally separating formula is ¢; = F[g 3 ¢q. The
formula ¢ being globally separating indicates that in all positive executions,
the brake is triggered every three seconds (i.e., within the interval [t,¢ + 3]
for every time point t), irrespective of whether there is an obstacle within the
unsafe distance. The formula ¢; has size two and a future-reach of three seconds,
meaning that any online monitor requires a three second lookahead window to
check the satisfaction of ;. There is another formula ps = —p — F[g 1) ¢ that
is globally separating for the sample. The formula @2 being globally-separating
indicates that in all positive executions, for every time point ¢, if an obstacle is
within the unsafe distance, then the brake is triggered within one second (i.e.,
within the interval [¢,¢ + 1]). Although of size five, @9 has future-reach of one
second and will be typically preferred over ¢, for online monitoring in a safety-
critical scenario.

For the problem of synthesizing MTL formulas, we first study whether a
solution exists. It turns out that there are samples S and future-reach bound K
for which there might not exist any formula that is globally-separating for S and
has future-reach within K. To aid in checking whether a prospective formula
exists, we identify a simple characterization of S based on the future-reach K.
Such a characterization enables us to design an NP algorithm that can decide
whether a prospective algorithm exists. Also, it provides an upper-bound, which
is polynomial in the inputs & and K, on the size of the prospective formula if
one exists. We mention the details of the existence check in Section 4.

To synthesize a prospective formula, we rely on a reduction to constraint
satisfaction problems. In particular, following other works in synthesis of formu-
las [46,52], our algorithm encodes the problem in a series of satisfiability modulo
theory (SMT) problems in Linear Real Arithmetic (LRA). To our knowledge,
we design the first SMT-based algorithm that can synthesize MTL formulas of
arbitrary syntactic structure. Such an SMT-based algorithm allows us to extend

4 Raha et al.

our algorithm to work for other settings that are common in the synthesis of
formulas [26,40].

Further, we analyze the complexity of the decision version of the problem
of synthesizing MTL formulas. While the exact complexity lower bounds are
open, we show that the corresponding decision problem is in NP. The central
SMT-based algorithm with all the theoretical results is in Section 5.

We also implement our algorithm using a popular SMT solver in a proto-
type named TEAL. We evaluate the ability of TEAL to synthesize MTL formulas
typically employed for monitoring cyber-physical systems. We also empirically
study the interplay between the size and future-reach of a formula. We present
all the experimental results in Section 6.

Related works. To our knowledge, there are only a limited number of works for
synthesizing MTL formulas. One of them [56] infers MTL formulas as decision
trees for representing task knowledge in Reinforcement Learning. Some other
works [30,57] consider the parameter search problem for MTL where, given a
parametric MTL formula (i.e., an MTL formula with missing temporal bounds),
they infer the ranges of parameters where the formula holds/does not hold on a
given system. Unlike our work, none of these works aims at synthesizing concise
MTL specifications for monitoring tasks.

There are, nevertheless, numerous runtime monitoring procedures for
MTL [55,4,22,29,10,17,33,38], clearly indicating the need for efficiently moni-
torable MTL specifications. Many of them also rely on the future-reach of a
specification [29,10] or other similar measures (e.g., horizon [22], worst-case prop-
agation delay [33], etc.) to quantify the efficiency of their monitoring procedure.

Interestingly, several works focus on synthesizing formulas in STL, an exten-
sion of MTL to reason about real-valued signals. Bartocci et al. [8] provide a com-
prehensive survey of the existing works on inferring STL. Many of them [3,35,34]
solve the parameter search for STL, while others [14,13] learn decision trees over
STL formulas, which typically do not result in concise formulas. There are few
works [43,47] that do prioritize the conciseness of formulas during inference.
These works cannot be directly applied to solve our problem for two main rea-
sons. First, these works assume inputs to be piecewise-affine continuous signals.
While the above assumption is natural for synthesizing STL formulas inference
from real-valued signals, in our setting, we must rely on the assumption that our
inputs are piecewise-constant signals, which is natural for Boolean-valued sig-
nals. Second, these works do not employ any measure, apart from conciseness,
that directly influences the efficiency of runtime monitoring.

Finally, there are works on synthesizing formulas in other temporal logics such
as Linear Temporal Logic (LTL) [46,51,16,50], Property Specification Language
(PSL) [52], etc., which are not easily extensible to our setting.

2 Preliminaries

In this section, we introduce the basic notations used throughout the paper.

Synthesizing Efficiently Monitorable Formulas in MTL 5

Signals and Prefires. We represent continuous system executions as signals. A
signal : R>o — 27 over a set of propositions P is an infinite time series that
describes relevant system events over time. A prefix of a signal x restricted to
domain T = [0,T),T € Rx is a function x: T — 27 where z7(t) = x(t) for
allt € T.

To synthesize MTL formulas, we rely on finite observations that are sequences
of the form 2 = ((¢;,0:))i<n, n € N such that (i) to = 0, (ii) ¢, < T, and (ii)
for all i < n, §; C P is the set of propositions that hold at time point ¢;. To
construct well-defined signal prefixes, we approximate each observation {2 as a
piecewise-constant signal prefix w% using interpolation as: (i) for all i < n, for
all t € [t;,tir1), xr(t) = 0;; and (ii) for all ¢ € [t,,T), x1(t) = §,. For brevity,
we refer to signal prefixes simply as ‘prefixes’ when clear from the context.

Metric Temporal Logic. MTL is a logic formalism for specifying real-time prop-
erties of a system. We consider the following syntax of MTL:

p=peP | p| oiAps | ¢p1Ver | 01 Urgps | Fro | Gro

where p € P is a proposition, — is the negation operator, A and V are the
conjunction and disjunction operators respectively, and Uy, F; and Gy are the
timed-Until, timed-Finally and timed-Globally operators respectively. Here, I is
a closed interval of non-negative real numbers of the form [a, b] where 0 < a < bS.
Note that the syntax is presented in negation normal form, meaning that the —
operator can only appear before a proposition.

As a syntactic representation of an MTL formula,
we rely on syntaz-DAGs. A syntax-DAG is similar to

the parse tree of a formula but with shared common v
subformulas. We define the size || of an MTL formula /N
© as the number of nodes in its syntax-DAG, e.g., the /\ /FI
size of (p A Gy q)V (Frp) is six as its syntax-DAG has Gy P

six nodes, as shown in Figure 1.

As mentioned already, we follow the continuous
semantics of MTL. For the standard continuous se- Fig.1: Syntax DAG of
mantics (=) of MTL over infinite signals, we refer to (pAGrq)V (Frp)
the work of [48] and provide detailed descriptions in
Appendix A. However, our setting demands a semantics of MTL over finite pre-
fixes such that the synthesized formulas will be ‘useful’ while monitoring over
infinite signals. Intuitively, we want an ‘optimistic’ semantics (f¢) of an MTL
formula ¢ over a prefix @t such that @y |=¢ ¢ if there exists an infinite signal
extending xr that satisfies ¢. In other words, xp “carries no evidence against”
the formula ¢. Formally, we want the definition of ¢ to satisfy the following
lemma.

Lemma 1. Given a prefiz xt, let ext(xr) = {x | x1 is a prefir of x} be the set
of all infinite extensions of xy. Then given an MTL formula ¢, xt =¢ ¢ if there
exists x € ext(xr) such that x = .

6 Since we infer MTL formulas with bounded lookahead, we restrict I to be bounded.

6 Raha et al.

The proof of the above lemma proceeds via structural induction over ¢, which
is describe in Appendix B.

Towards this, we follow the idea of ‘weak semantics’ of MTL defined in [29]7
and interpret MTL over finite prefixes. Given a prefix @, we inductively define
when an MTL formula ¢ holds at time point ¢t € T, i.e., (xr,t) E¢ ¢, as follows:

(x1,t) Ftp <« p € xr(t);
(zr,t) Ft —p — p & zr(t);
(zr,t) Fr o1 N2 = (zr,t) |t o1 and (@1, 1) Fr 02;
(zr,t) Fr 01 V2 — (zr,t) Fr 1 or (z1,1) Fr p2;
(T, t) Ft 01 Ul p) 02 =

o3t €t+a,t+bNTst. (xr,t') Er w2 and V¢ € [t,t'], (xT,t") ¢ 1, or
e T <t+bandVt" €[t,T), (xr,t") E¢ p1
t) e Flap o = t+b0>Tor 3t €t+a,t+0NTst. (zr,t') = ¢
t) ¢ G[ab]tp — t+a>TorVt e [t+a,t+bNT,(xr,t)|=fg0

(mTa
(wT7

We say that @t satisfies ¢ if (@, 0) ¢ ¢. Also, for ensuring that our semantics
complies with Lemma 1, we define (@x,t) =¢ ¢ for all t > T for any .

3 The Problem Formulation

Next, we formally introduce the various aspects of the central problem of the
paper.

Sample. The input data consists of a set of labeled (piecewise-constant) prefixes.
Formally, we rely on a sample S = (P, N) consisting of a set P of positive prefixes
and a set N of negative prefixes such that PN N = (). We say an MTL formula ¢
is globally-separating (G-sep, for short) for S if it satisfies all the positive prefixes
at each time point and does not satisfy negative prefixes at some time point®.
Formally, given a sample S, we define an MTL formula ¢ to be G-sep for S if
(i) for all @y € P and for all t € [0,T), (@r,t) ¢ ¢; and (ii) for all yg € N,
there exists t € [0,T") such that (yr,t) ¢ .

Future-Reach. To formalize the lookahead of an MTL formula ¢, we rely on its
future-reach fr(y), following [31,29], which indicates how much of the future is
required to determine the satisfaction of . It is defined inductively as follows:

fr(p) = fr(=p) =0
fr(er Npa) = fr(pr V p2) = max(fr(e1), fr(e2))
fr(01 Ulap) p2) = b+ max(fr(p1), fr(p2))
fr(Flap @) = fr(Gpay) = b+ frp)
" Following Eisner et al. [24], Ho et al. [29] defined the weak semantics of MTL for

the pointwise setting, which we adapt here for the continuous setting.
® Most stream-based monitors check if the specification holds at every time point [11].

Synthesizing Efficiently Monitorable Formulas in MTL 7

To highlight that fr(yp) quantifies the lookahead of ¢, we observe the following
lemma:

Lemma 2. Let ¢ be an MTL formula such that fr(p) < K for some K € R0,
Let @ and y be two signals such that Ty k) = Yjo,x)- Then, for all T € R29,

x7 [t ¢ if and only if yr =t .

Intuitively, the above lemma states that a formula with future-reach < K
cannot distinguish between two signals that are identical up to time K. The
lemma can be proved using structural induction over (. For space constraints,
we include the whole proof in Appendix C.

The Problem. We now formally introduce the problem of synthesizing an MTL
formula. In the problem, we ensure that the MTL formula is efficient for moni-
toring by allowing the system designer to specify a future-reach bound.

Problem 1 (SYNTL). Given a sample S = (P, N) and a future-reach bound K,
find an MTL formula ¢ such that (i) ¢ is G-sep for S; (ii) fr(y) < K; (iii) for
every MTL formula ¢’ such that ¢’ is G-sep for S and fr(¢') < K, |¢| < |¢/|.

Intuitively, the above optimization problem asks to synthesize a minimal size
MTL formula that is G-sep for the input sample and has a future-reach within
the input bound. Before we dive into the procedure for finding such an MTL
formula, we first study if such an MTL formula even exists.

4 Existence of a solution

As alluded to in the introduction, for any given sample & and future-reach
bound K, the existence of a suitable G-separating formula is not always guar-
anteed. For an illustration, consider the sample & with one positive prefix
zr = {(0,{q}),(2,{})) and one negative prefix yr = ((0,{q})), and domain
T = [0,4). For S, there is no formula ¢ with fr(¢) < 1 that is G-sep. To see
this, assume there exists a prospective formula . Consequently, ¢ being G-sep,
(xT,0) = ¢. Observe that, for all time-points ¢ € T, y; when restricted to time
interval [¢,t+1]NT appears identical to @ when restricted to time interval [0, 1]
to ¢ since its future-reach is 1 (using Lemma 2). Thus, for all time-points t € T,
(yp,t) E ¢ violating that ¢ is G-sep.

What we show now is that one can check whether a prospective formula
exists by relying on a simple characterization of the inputs S and K. Towards
this, we introduce introduce some terminology.

We introduce the infix of a prefix @ that is a restriction of &t to a specific
time interval. Formally, given two time-points t; <t < T and a prefix xr, infix
w%l’tﬂ is the function x%l’h] : [0, — t1] — 2% such that acq[lfl’tﬂ(t) =axr(t+1t1)
for all t € [0,y — t1].

Next, we define a characterization of a sample S based on the future-reach K,
which we term as K-infiz-separable. Intuitively, we say S to be K-infiz-separable

if there is a K-length infix yq[ffl’tﬂ for every negative prefix yp in S that is not

8 Raha et al.

an infix of any positive prefix in S. Formally, S = (P, N) is K-infiz-separable if
for every negative prefix yr € N, there exists an infix yq[;l’h] with to —t; < K
such that y%l’m + wq[lfl’tﬂ for any infix :Bq[rtl’t"’] of any positive prefix 1 € P.

We now state the result that enables checking the existence of a solution to
Problem 1.

Lemma 3. For a given sample S and future-reach bound K, there exists an
MTL formula ¢ with fr(p) < K that is G-sep for S if and only if S is
K-infiz-separable.

Proof. (=) For the forward direction, consider ¢ be an MTL formula with
fr(p) < K that is G-sep for S. Since ¢ is G-sep, for any arbitrary negative
prefix, say g, there must be a time-point, say t < T, such that (gr,?) & . If

t+ K < T, we show by contradiction that the infix g%f’”m is not an infix in any
positive prefix. In particular, if 37%”}{] = w¥7t+K], then (xr,t) £ ¢ as ¢ cannot

distinguish between signals that are identical up to time K (using Lemma 2). If

t+ K > T, the semantics of MTL being weak, there is an L < K witht+L < T

such that for any y € emt(yj[TO’HL]), (y,1t) & ¢ (using Lemma 1). Once again, we

show by contradiction that the infix 371[1? +L is not an infix in any positive prefix.

In particular, if gq[f’t“] m%’HL], then for all x € ext(w%)’HL]) (z,t) = . Also,
for any x € ext(xr) (z,t) = ¢, meaning (xr,t) = ¢ (again, using Lemma 1).
(<) For the other direction, consider S to be K-infiz-separable. Using the
definition of K-infiz-separable, for any arbitrary negative prefix, say g, we have
an infix g%l’tz] with to — t; < K that is not an infix in any positive prefix. We

construct a formula g, that explicitly specifies the propositions appearing in
1,t2]

each interval of the infix g{ using G and A operators. Observe that fr(ypg,) <

K since tos —t; < K in 17%“2]. Now, the formula -, holds at all time-points
in all positive prefixes, while it does not hold at time-point ¢; in gy. We finally
construct the prospective formula as ¢ = /\y1T eN TPy, Which is G-sep for § and
also, fr(¢) < K. O

We now describe an NP algorithm to check whether a sample S is
K-infiz-separable. The crux of the algorithm is to guess, for each negative prefix
Yy, an infix y%l’m with to — t; < K and then check whether it is an infix of
any positive prefix. The procedure of checking involves comparing the various

tz]

intervals of yqﬁl’ against the intervals of infixes of positive prefixes.

To describe the checking procedure in detail, let g%“t?] be an infix of the

negative prefix . We like to check whether g%l‘“] is an infix of the positive
prefix Zr. To do so, we check g%ﬁ“tz} = :E%’H(trh)] with only those infixes in
which the time-points where 1 and y have been observed coincide. Precisely,
we check gjq[lfl’fa] = iq[;’t+(t2_t1)] for all those infixes of Tt where t”/ —t =t — #1,
t" and ¢’ being timepoints where @y and y; have been observed, respectively.
This process is based on the fact that the changes in an infix occur only at the

observation time points. Also, this process takes time polynomial in the number

Synthesizing Efficiently Monitorable Formulas in MTL 9

of observation time-points of 1 and gp. We can perform the procedure for each
positive and negative prefix. Overall, we have the following result.

Lemma 4. Given a sample S and future-reach bound K, checking whether S is
K-infiz-separable can be done in NP.

5 An SMT-based Algorithm

Our algorithm relies on an SMT-based approach inspired by the numerous
constraint satisfaction-based approaches for synthesizing temporal logic formu-
las [46,15,52,2]. Roughly speaking, our algorithm constructs a series of formulas
in Linear Real Arithmetic (LRA) and uses an optimized SMT solver to search
for the desired solution. To expand on the specifics of our algorithm, we first
familiarize the readers with LRA.

Linear Real Arithmetic (LRA). In LRA [6], given a set of real variables Y, a term
is defined recursively as either constant ¢ € R, a real variable y €), a product
c-y of a constant ¢ € R and a real variable y €), or a sum ¢; + t5 of two terms
t; and to. An atomic formula is of the form t; ¢ t3 where o € {<, <, =,>,>}.
An LRA formula, defined recursively, is either an atomic formula, the negation
=@ of an LRA formula @, or the disjunction @1 V @5 of two formulas @1, P>. We
additionally include standard Boolean constants true, and false and Boolean
operators A, — and <.

To assign meaning to an LRA formula, we rely on a so-called interpretation
function ¢: Y — R that maps real variables to constants in R. An interpretation
¢ can easily be lifted to a term ¢ in the usual way, and is denoted by ¢(t). We
now define when ¢ satisfies a formula ¢, denoted by ¢ |= ¢, recursively as follows:
Lt oty for o € {<,<,=,>,>} if and only if ¢(t1) ¢ t(t2) is true, ¢ E —P if
L@, and ¢ = D1 V Py if and only if ¢ = @y or ¢ |= Py We say that an LRA
formula @ is satisfiable if there exists an interpretation ¢ with ¢ = .

Despite being NP-complete, with the rise of the SAT/SMT revolution [42],
checking the satisfiability of LRA formulas can be handled effectively by several
highly-optimized SMT solvers [45,18,5].

Algorithm Overview. Our algorithm constructs a series of LRA formulas
(% k)n=1.2,.. to facilitate the search for a suitable MTL formula. The formula
95 has the following properties:

1. @Y% ¢ is satisfiable if and only if there exists an MTL formula ¢ of size n
such that ¢ is G-sep for S and fr(¢) < K.

2. from any satisfying interpretation ¢ of @27 K, one can construct an appropri-
ate MTL formula ¢*.

In our algorithm, sketched in Algorithm 1, we first check whether S is
K-infiz-separable (as described in Section 4) which informs us whether a prospec-
tive formula exists. We now check the satisfiability of & , for increasing values

10 Raha et al.

Algorithm 1 Overview of our algorithm

Input: Sample S, fr-bound K
1. if S is not K-infiz-separable then return No prospective formula
2: n+0
3: while True do
4: n+<n-+1
Construct @5 g = @flt:g’K A @{fs Kk NP K
if &% ; is SAT then o
Construct ¢* from a satisfying interpretation ¢ return ¢*

of size n starting from 1. If § ;. is satisfiable for some n, then our algorithm con-
structs a prospective MTL formula ¢* from a satisfying interpretation ¢ returned
by the SMT solver. This algorithm terminates because of checking whether a so-
lution exists apriori and it returns a minimal formula because of the iterative
search through MTL formulas of increasing sizes.

The crux of our algorithm lies in the construction of the formula &% f. In-

ternally, g - = @ffg K A@{: 5.5 NP8 ¢ 1s a conjunction of three subformulas,
each with a distinct role. The subformula @ff% x encodes the structure of the

prospective MTL formula. The subformula @’Z s, K ensures that the future-reach
of the prospective formula is less than or equal to K. Finally, the subformula
.78 i ensures that the prospective formula is G-sep for S. In what follows, we
expand on the construction of each of the introduced subformulas. We drop the
subscripts n, S, and K from the subformulas when clear from the context.

Structural Constraints. Following Neider and Gavran [46], we symbolically en-
code the syntax-DAG of the prospective MTL formula using the formula &%
For this, we first fix a naming convention for the nodes of the syntax-DAG of an
MTL formula. For a formula of size n, we assign to each of its nodes an identifier
from {1,...,n} such that the identifier of each node is larger than that of its
children if it has any. Note that such a naming convention may not be unique.
Based on these identifiers, we denote the subformula of ¢ rooted at Node i as
©li]. In that case, p[n] is precisely the formula .

Next, to encode a syntax-DAG symbolically, we introduce the follow-
ing variables®: (i) Boolean variables x; » for i € {1,...,n} and A\ € P U
{=,V,A,Ur,F,Gr}; (ii) Boolean variables I; ; and r; ; for i € {1,...,n} and
j € {1,...,4}; (iii) real variables a; and b; for ¢ € {1,...,n}. The variable z; x
tracks the operator labeled in Node 4, meaning, x; » is set to true if and only
if Node i is labeled with A. The variable [; ; (resp., r; ;) tracks the left (resp.,
right) child of Node ¢, meaning, I; ; (resp., r; ;) is set to true if and only if the left
(resp., right) child of Node 4 is Node j. Finally, the variable a; (resp., b;) tracks
the lower (resp., upper) bound of the interval I of a temporal operator (i.e.,
operators Uy, F; and Gy), meaning that, if a; (resp. b;) is set to a € R (resp.,

9 We include Boolean variables in our LRA formulas since Boolean variables can always
be simulated using real variables that are constrained to be either 0 or 1.

Synthesizing Efficiently Monitorable Formulas in MTL 11

b € R), then the lower (resp., upper) bound of the interval of the operator in
Node i is a (resp., b). While we introduce variables a; and b; for each node, they
become relevant only for the nodes that are labeled with a temporal operator.
We now impose structural constraints on the introduced variables to ensure
they encode valid MTL formulas. Exemplarily, we have the following constraint:

/\ \/ acm} A [/\ /\ LAV _“’Ei,)\’}v

1<i<n A€A 1<i<n A£MN €A

where A = PU{—~,V,A,U;,F;,G;}. The above constraint ensures that each
node is labeled by exactly one operator or one proposition. We also impose
other structural constraints, such as each node can have at most two children,
Node 1 must be a proposition, etc. Such structural constraints are similar to
the ones proposed by Neider and Gavran [46]. We here additionally ensure that
the — operator appears only in front of propositions. Also, we ensure that the
intervals of the temporal operators are proper using the constraint A; ., ., 0 <
a; < b; < K. We refer interested readers to Appendix E.1 for all the constraints.

The subformula @5 is a conjunction of all the structural constraints we
described. Using a satisfying interpretation ¢ of #*!", one can construct the syntax
DAG of a unique MTL formula ¢*.

Future-reach Constraints. To symbolically compute the future-reach of the
prospective formula ¢, we encode the inductive definition of the future-reach,
as described in Section 3 in an LRA formula. To this end, we introduce real
variables f; for i € {1,...,n} to encode the future-reach of the subformula [i].
Precisely, f; is set to f € R if and only if fr(¢[i]) = f.

To ensure the desired meaning of the f; variables, we impose constraints such
as

/\ [ziF, Alijl = [fi = fi +bi. (1)

1<i<n,1<j<i

This constraint expresses that if Node i contains the F; operator where I is
encoded using a; and b;, then the future-reach of ¢[i], i.e., fr(¢[i])), must be the
future-reach of ¢[j] plus b, i.e., fr(p[j])+b. For other operators, we impose similar
constraints based on the definition of future-reach for that operator, described in
Section 3. We refer the readers to Appendix E.2 for the remaining future-reach
constraints.

Finally, to enforce that the future-reach of the prospective MTL formula is
within K, along with the constraints mentioned above, we have f, < K in &/,

Semantic Constraints. To symbolically check whether the prospective formula
is G-sep, we must encode the procedure of checking the satisfaction of an MTL
formula into an LRA formula. To this end, we rely on the monitoring procedure
devised by Maler and Nickovic [41] for efficiently checking when a signal satisfies
an MTL formula. Since our setting is slightly different, we take a brief detour
via the description of our adaptation of the monitoring algorithm.

12 Raha et al.

Given an MTL formula ¢ and a signal prefix x, our monitoring algorithm
computes the (lexicographically) ordered set Z,(xt) = {I1, -, I} of mazimal
disjoint time intervals Iy, - - - , I,y where ¢ holds on @r. Mathematically speaking,
the following property holds for the set Z,, (zT) we construct:

Lemma 5. Given an MTL formula ¢ and a prefiz xt, for allt € T, (x1,t) ¢ ¢
if and only ift € I for some I € Z,(xT).

In our monitoring algorithm, we compute the set Z,(xr) inductively on
the structure of the formula ¢. To describe the induction, we use the nota-
tion ZJ(z1) = Ulelg,(:m) I to denote the union of the intervals in Z ,(xt). For
the base case, we compute Z,(zt) for every p € P by accumulating the time
points ¢t € [0,T) where (x1,t) = p into maximal disjoint time intervals. In the
inductive step, we exploit the relations presented in Table 1 for the different
MTL operators. In the table, [t1,t2) S[a,b] = [t1 —b,ta—a)NT and Z¢ = T —Z.
While the table presents the computation of Z(xr), we can obtain Z,(xt) by

Table 1: The relations for inductive computation of Zg (7).
oy (@) = (T ()
(z1) = 151 (z1) U If:z (z1)

Igwm
T3 npo (1) = T3, (1) N I3, (1)
Iﬁ[aﬁb] o(xr) = (UIE%(W) I6[a,b))UT —b,T)
Ig,, , ¢ (@) = (UIE(Iw(mT))C 161a,b) V[T —a,T)
20, @0 = Ur ez, on Unyer, on (Lo N1) Sfab)) N 1) U T,
[max(T —b,t),T), if 3t st. [t,T) € L, (wr)

where It =
B { , otherwise

simply partitioning Ig (z) into maximal disjoint intervals.

For an illustration, we consider the example from the introduction and com-
pute Z,, (u1) where u; is the first positive prefix, o = pVF[g 17¢, and T = [0, 6).
First, we have Z,,(u1) = {[0,2),[3,6)} and Z (u1) = {[0,1),[2,4)}. Now, we can
compute Zg 4(u1) ={[0,4),[5,6)} and then Zovr ,(u1) ={[0,6)}.

In the monitoring algorithm, the number of maximal intervals required in
Z,(x7) is upper-bounded by M = plep|, where p = max({|Z,(z1)| | p € P}), as
also observed by Maler and Nickovic [41]. The computation of this bound can
also be done inductively on the structure of .

Now, in the subformula @°¢ we symbolically encode the set 7, (z1) of our
prospective MTL formula ¢. To this end, we introduce variables té,m,s and t7 ,,
wherei € {1,...,n},me{l,..., M}, and s € {1,...,|S]|}, s being an identifier

for the s*" prefix x5 in S. The variables t. | _and ¢!, _ encode the m!" interval
» Yi,m,s im,s [if

of Z_; (1) for the subformula ¢[i]. In other words tt .=t and ¢!
and only if [ty,t2) is the m‘" interval of 7,](w%).

i

Synthesizing Efficiently Monitorable Formulas in MTL 13

Now, to ensure that the variables ¢! and ¢ _ have their desired meaning,

i,m,S i,m,s

we introduce constraints for each operator based on the relations defined in
Table 1. We now present these constraints for the different MTL operators.

For the — operator, we have the following constraints:

/\ Ti- Nlijg— [/\ comp (i, j)]

1<i<n 1<s<|S|
1<j<i

where, for every &% in S, comp, (i, j) encodes that I;J[i] (%) is the complement
of I;’[j] (%) . We construct comp,(i,j) as follows:

. l
ite(tj 1, =0, (2)
l _gr r 4l
A s = Bms Mims = Umaten 3)
1<m<M-—1
l l
tins = 0Nt o =151 A (4)
l _ar r 4l
/\ ti,m—i—l,s - tj,m,s A ti,m-‘rl,s - tj,7n+1,s)7
1<m<M-—1

where ite is a syntactic sugar for the “if-then-else” construct over LRA formulas,
which is standard in many SMT solvers. Here, Condition 2 checks whether the

left bound of the first interval of Isa[j] (%), encoded by t§,1,sa is 0. If that holds, as
specified by Constraint 3, the left bound of the first interval of Isa[i] (x3.), encoded

by t} ; ;, will be the right bound of the first interval of Z (1), encoded 7 ; |
and so on. If Condition 2 does not hold, as specified by Constraint 4, the left
bound of the first interval of Z_;,(x7) will start with 0, and so on.

As an example, for a prefix 7 and T = [0,7), let Z_, (@1) = {[0,4),[6,7)}.
Then, Constraint 3 ensures that Z_, (x7) = {[4, 6)}1°. Conversely, if L (@7) =
{[1,4),[6,7)}, then Constraints 4 ensures that Z_, (1) = {[0,1),[4,6)}.

For the V operator, we have the following constraint:

. ce
/\ ziv Nl Arig — | /\ union, (i, 3, j')],
1<i<n 1<s<|S|
1<j,5' <1

where, for every 3 in S, unions(i, j, j') encodes that Z ., (z7) consists of the
maximal disjoint intervals obtained from the union of the intervals in Z (%)

1o |Z.(;; ()| may differ for different subformulas ¢[i]; we address this at the end of this
section.

14 Raha et al.

and Z (7). We construct union(i, j, j') as follows:

/\ /\ \/ (tgm,s = t(jf,m’,s) \ \/ (t?;m,s = t?’,m’,s) A (5)

cellr] 1Sm<M \1<m/<M 1<m/ <M
o T o
/\ /\ \/ (ti,m,s - tj,m’,s) — /\ (tj,m’,s g Ij/7m/l7s) A
o€ll,r] 1<m<M \1<m/<M 1<m/"<M

/\ /\ \/ (tgm,s = tljj’,m’,s) — /\ (t?’,m’,s g I]}m”’s))

o€l,r] 1<m<M \1<m/<M 1<m"" <M
(7)
where I, ,, s denotes the interval encoded by bounds tfc)m’s and tz,m75“~ Here,
Constraint 5 states that the left (resp., right) bound of each interval of Z ; (@),

encoded by té,m,s (resp., t} ,,, ;) corresponds to one of the left (resp., right) bounds
of the intervals in Z_; (@7) or in Z ;, (@7). Then, Constraint 6 states that for
each interval I in Iw[j] (%), the left (resp., right) bound of I should appear as
the left (resp., right) bound of some interval in Z_, (@7) if and only if the left
(resp., right) bound of I is not included in any of the intervals in Z ., (x7).
Constraint 7 mimics the statement made by Constraint 6 but for the bounds of
the intervals in Z ., (z5).

For an illustration, assume that Z ,(xy) = {[1,4),[6,7)} and Z_,,(x7) =
{[3,5),[6,7)} for a prefix &% and T = 7. Now, if ¢[i] = »[j] V ¢[j], then
L, (@) = {[1,5),[6,7)} based on the relation for V-operator in Table 1. Ob-
serve that all the bounds of the intervals in IMi] (%), i.e., 1, 5, 6, and 7, are
present as the bounds of the intervals in either Z ,(z}) or Z (7). This fact
is in accordance with Constraint 5. Also, the right bound of [1,4) in T, (%)
does not appear as a bound of any intervals in Iw[i] (%), as it is included in an
interval in Z_ . (@y), i.e., 4 € [3,5). This is in accordance with Constraint 6.

Next, for the Fj-operator where I is encoded using a; and b;, we have the

following constraint:

/\ ziw, Nlij — [/\ union’, (i, k, k) A @L‘“’bi] (k:,j)].
1<i<n 1<s<|S|
1<j<i
based on the relation for the F[,; operator in Table 1. We here rely on an
intermediate set of intervals Zj, encoded using some auxiliary variables ﬂcm’s
and t}ms where m € {1,..., M} and s € {1,...,|S|}. Also, we use the formula

@Lai’bi}(k:, j) to encode that the intervals in 7, can be obtained by performing

" In LRA, ¢ & [t1,t2) can be encoded as t < t1 Vt > .

Synthesizing Efficiently Monitorable Formulas in MTL 15

I © [a,b] to each interval I in I(p[j] (%), where a; = a and b; = b. Finally, the
formula union’(i, k, k) encodes that L (%) consists of the maximal disjoint
intervals obtained from the union of the intervals in Z and {[T — b, T)}.

The construction of union’(i, k, k) is similar to that of union(i, j,5’) in that

the constraints involved are similar to Constraints 5 to 7. For &%](k;, j), we
have the following constraint:

/\ [ffc)ms = max{0, (Jms—)} /\tkms = max{0, (jms—ai)}] (8)
1<m<M-—1

As an example, consider 7, (x7) = {[1,4), [617)} for a prefix 3 and T =
7. Now, if ¢[i] = F[14) ¢[j], then first we have Z; = {[0,3),[2,6)} based on
Constraint 8 12, Next, we have Z, i (@) = {[0,7)} which consists of the maximal
disjoint intervals from Z, U{[T—4,T)} = {[0,3), [2,6), [3,7)} using union’ (i, k, k).
For the U; operator, we have the following constraint:

/\ ziu, AN Arig — | /\ intersections(ky, j, 7') A L% (ky k)
1<i<n 1<s<]S]
15,5 <

Acond—ints(ks, ka, j) A uniong (z,kg,kg)]

Here, we introduce three intermediate set of intervals Zy,, Zy, and Zy. 5 €n-
coded using auxiliary variables tk m,s and tr where i € {1,2,3}, m €

ki,m,s
{1,..., M} and s € {1,...,[S[}. Similar to the constraints for the \V operator,
we denote an interval in Zy, as Iy, m.s where, Iy, ;.o = [tfk“m otk m.s)- Now,

intersectiong(ki, 7, ') encodes that Zy, consists of the maximal disjoint intervals
obtained from the intersection of the intervals in Z (%) and Iw[j,](a:%). Note
that the intersection can be achieved using the unions and the comp, operators
using De Morgan’s law, i.e., AN B = (A U B)¢. Then, el 1](]62,/{1) denotes
that the intervals in Z(ks) can be obtained by performing IS][a, b] to each interval
in 7, using constraint 8. Next, the operator cond — int4(ks, kg, j) denotes that
the m!" interval in Z(k3) (Ir,.m.s) is obtained by taking the intersection of the
" interval in Z(kg) (Igy.m.s) and the m/*" interval in T o1(®@1) (Ljm,s) such
that, Ix, m.s (Iky,m,s = Lk1,m,s ©[a, b, by construction) is a subset of I v s. This
can be achieved by encoding cond — ints(ks, ks, j) as the following constraint:

A N Tkims € Limrs) = Tigmis = Trymos 0 L s
1<m<M 1<m/'<M

Note that the subset check and the intersection of two intervals both allow
simple encodings in LRA. Finally, the formula uniong(i, k3, k3) encodes that

12 While the intervals in Z; may not be disjoint, union’ (i, k, k) ensures that T, (xt)
consists of only maximal disjoint intervals.

16 Raha et al.

T, (%) consists of the maximal disjoint intervals obtained from the union of

the intervals in fkg

For an illustration, assume that Iw[]](%) ={[1,3),[5,8)} and T, oli'] (z5) =
{[4,6),[7,9)} for a prefix 7 and T' = 9. Now, let ¢[i] = ¢[j] U3 ©[j’]. Then,
Z,y(x7) = {[5,8)} using the computation in Table 1.

Note that, following the constraint, Z,, = {[5,6),[7,8)} after taking the
intersection of Icp[j](1) and Z ., (7). Then, the Minkowski minus results into

the set of intervals Zy, = {[2,6),[4,8)} with @ = 0 and b = 3. The conditional
intersection of Z, and Z oli (wT) produces the set of intervals Z, = {[5,6), [5,8)}.

Note that this is because both the intervals in Ikl are subsets of the interval [5, 8)
inZ (1) and not of [1,3) and we intersect the intervals in Z, with only [5,8).

Finally the operator union, on Zy, results in L, (@1) to be {[5,8)} that complies
with the actual semantics of the U operator. It can be also checked that taking a
normal intersection instead of the conditional one would have wrongly resulted
in Z(z3)li]] to be {[2,3),[5,8)} that depicts the intricacy in computing the
satisfaction intervals for U as shown in Figure 3(a) in [41].
For the G and the A operator, we encode the relations described in Table 1
by reusing the constraints from the formulas comp,(s,j), unions(i,,j’), and
oleib (k: 7). We present the exact constraints in Appendix E.3. We now assert
the correctness of the formulas encoding the set operations as follows:

Lemma 6. The formulas comp,(i,j), unions(i,],5), @Lai’bi](k‘,j),
intersections(i, §, 7")and cond—ints(i,7,5") correctly encode the complement,
union, ©, intersection and conditional intersection operations on a set of
intervals, resp.

The proof of the lemma is presented in Appendix F.

It is worth noting that although the number of intervals in Isa[i] (@) for
each subformula ¢[i] is bounded by M, it may not contain the same number of
intervals. For instance, Z,, (%) = {[0,1),[6,7)} has two intervals, while, assuming
T=771,(x%)={[1,6)} has only one interval.

To circumvent this, we introduce some variables num,; , for ¢ € {1,...,n}
and s € {1,...,|S|} to track of the number of intervals in 7, (1) for each sub-
formula] for each prefix . We now impose A<, 1< pq[m > num; 5] —
[ti m.s = TAt],, o = T]. This ensures that all the unused variables t7,, . for each
Node i and preﬁx 7 in S are all set to T. We also use the num, s variables in
the constraints for easier computation of Z oli (a3 for each operator. We include
this in our implementation but omit it here %or a simpler presentation.

Finally, to ensure that the prospective formula ¢ is G-sep for S, we add:

/\ [(tln,l,szo)/\(z,l,s:T)]/\ /\ [(nla?éo) (nls?éT)]

TiEP T EN

This constraint says that Z . (xy) = {[0,7)} for all the positive prefixes @7,

while 7

o (@) # {[0,T)} for any negative prefixes j.

Synthesizing Efficiently Monitorable Formulas in MTL 17

The correctness of our algorithm follows from the correctness of the inductive
computation of Z,,(xr) in Lemma 5 and its encoding using the formulas described
in Lemma 6. We state the correctness result formally as follows:

Theorem 1 (Correctness). Given a sample S and a future-reach bound K,
Algorithm 1 terminates and outputs a minimal MTL formula ¢ such that ¢ is
globally separating for S and fr(yp) < K, if such a formula exists.

Proof. The termination of Algorithm 1 is guaranteed by the decision procedure
of checking whether S is K-infiz-separable (Section 4). The minimality of the
synthesized formula is due to the iterative search of formulas of increasing size
and the correct encoding of &5 . The correctness of @ ;- follows from the
correctness of the encoding of set operations described in Lemma 6 and the
correctness of computation of the sets Z,,(x1) using Lemma 5. ad

Our synthesis algorithm solves the optimization problem SYNTL by con-
structing formulas in LRA. We now analyze the computational hardness of
SYNTL and, thus, consider its corresponding decision problem SYNTLy: given a
sample S, a future-reach bound K and size bound B (in unary), does there exist
an MTL formula ¢ such that ¢ is G-sep for S, fr(¢) < K, and |¢| < B. Fol-
lowing our algorithm, we can encode the SYNTL, problem in an LRA formula
@ =\, <5 P§ i, where &% p is as described in Algorithm 1. One can check that
the size of @ is O(|S||K|B3M?3). Now, the fact that the satisfiability of an LRA
formula is NP-complete [19] proves the following:

Theorem 2. SYNTL, is in NP.

Remark 1. While the exact complexity lower bound for SYNTL, is unknown, we
conjecture that SYNTL,; is NP-hard. Our hypothesis stems from the fact that
one can show SYNTL, is NP-hard for a simple fragment MTL(Gy, V, —), which
consists of only G,V and — operators, following the techniques of Fijalkow and
Lagarde [25] (see Appendix G). Note that the hardness result does not directly
extend to full MTL: the complexity might be either lower or higher since the
logic is a priori more expressive. We leave the hardness result for full MTL as
an open problem.

6 Experiments

In this section, we answer the following research questions to assess the perfor-
mance of our algorithm for synthesizing MTL formulas.

RQ1: Can our algorithm synthesize concise formulas with small future-reach?
RQ2: How does lowering the future-reach bound affect the size of the formulas?
RQ3: How does our algorithm scale for different sample sizes?

To answer the research questions above, we have implemented a prototype
of our algorithm in Python 3 using Z3 [44] as the SMT solver in a tool named

18 Raha et al.

TEAL (synThesizing Efficiently monitorAble mtL). To our knowledge, TEAL is the
only tool for synthesizing minimal MTL formulas for monitoring purposes (see
related works). In TEAL, we implement a heuristic on top of Algorithm 1. We
initially set the maximum number of intervals M in sets Z_, (@) to be p + 2
where p = max({|Z,(zr)| | p € P}). We iteratively increase the value of M until
we find a solution. To ensure that the synthesized MTL formulas are correct, we
implement a verifier based on the inductive computation of Z,(zr) mentioned
in Table 1. The heuristic improves the runtime of TEAL significantly since most
G-sep formulas ¢ never require the worst-case upper bound!? of M = p|y|.

As typically done in the literature of synthesizing formulas [46,2,50], we eval-
uate TEAL on benchmarks generated synthetically from MTL formulas. To ob-
tain useful MTL formulas, we identify a number of MTL patterns, listed in
Table 2, that are commonly used for monitoring cyber-physical systems. For
instance, the time-sensitive requirement of an electronically controlled steer-
ing (ECS) system “operational checks like RAM verification must be done ev-
ery 20 secs” can be monitored globally using the bounded recurrence formula
F|9,20] operational check [36]; the requirement of an autonomous vehicle (from
the introductory example) “brake should be triggered until within 2 secs the ve-
hicle has no obstacle in an unsafe distance ” can be monitored globally using
the bounded until formula brake Uy 5 no_obstacle.

Table 2: Typical MTL patterns used for monitoring cyber-physical systems

Bounded Recurrence: Globally(F, 1, P)
Bounded Response: Globally(p — F, 1, q)

(
Bounded Invariance: Globally(p — G, t,] Q)
Bounded Until: Globally(p Uy, +,] q)

In our experiments, we construct MTL formulas from the patterns in Table 2
by replacing time interval [t1, t2] with different values. Now, to generate a sample
from an MTL formula ¢, we generated a set of random prefixes and then classified
them into positive or negative depending on whether ¢ holds at all time-points
of the prefix or not. We conducted all the experiments on a single core of a AMD
EPYC 7702 64-Core CPU (at 2GHz) using up to 10GB of RAM. The timeout
was set to be 5400 secs for all the experiments.

To address RQ1, we ran TEAL on a benchmark suite generated from nine
MTL formulas obtained from the three MTL patterns in Table 2 by replacing t;
with 0 and ¢5 with 1,2, and 3. The suite consists of 36 samples for each pattern
(12 samples for each formula), with the number of prefixes ranging from 10 to
40 and the length of prefixes (i.e., the number of sampled time points) ranging

13 The operators Fr, G1, A, and — increase the number of required intervals by at most
one. Only the V operator can double it in the worst-case.

Synthesizing Efficiently Monitorable Formulas in MTL 19

from 4 to 6. For each sample S, we set the future-reach bound K to be fr(y),
where ¢ is the formula from which S was generated.

Table 3: Summary of the synthesized formulas.

Formula pattern Successful runs Timed out Avg Size Avg Time
Matched Not Matched (in sec)
Bounded Recurrence 36 0 0 2 17.5
Bounded Response 25 5 6 3.7 1860.3
Bounded Invariance 15 7 14 3.6 1397.2
Bounded Until 32 4 0 2.9 362.4

We depict the summary of the results for this experiment in Table 3. For
each run, we noted the formula synthesized, its size and the total time taken.
Further, we noted whether the synthesized formula matched the pattern of the
original formula using which the sample was generated. We observed that the
synthesized formulas matched the pattern of the original formula in 87.1% of the
cases in which TEAL did not time out. This shows that the randomly generated
samples captured the behaviour of the original formula rather well, enabling a
fair evaluation of TEAL.

Furthermore, we observed that the size of the synthesized formula is always
equal to or less than that of the original formula, demonstrating that TEAL always
finds a concise formula for a given future-reach bound Thus, we answer RQ1 in
positive.

To address RQ2, we investigate how the size of the synthesized formula
changed over varying future-reach bounds. For this, we ran TEAL on the same
benchmark suite from RQ1 but, this time, by varying the future-reach bound K
from 1 to 4. We investigate the average size of the minimal formula we get over
the generated 108 samples for each future-reach bound.

We observed that for future-reach bounds K of 1, 2, 3, and 4, the average
size of the synthesized minimal formulas were 3.904, 3.734, 3.370, and 3.361,
respectively. Thus, the trend is that with an increase in K, the average size of
the minimal formula decreased. This is because an increase in K allows a bigger
search space of formulas. One can, however, also notice that the decrease in the
average size of the formulas with increasing future-reach bound is not vast. This
highlights the advantage of using a future-reach bound for synthesizing formulas
for online monitoring and confirms the efficacy of our algorithm.

To address RQ3, we ran TEAL on a benchmark suite generated from MTL
formulas which originate from the MTL patterns in Table 2, setting ¢t; = 0 and
t; = 2. The suite consists of 36 samples for each formula, with the number of
prefixes varying from 10 to 60 and the length of prefixes varying from 4 to 14.
We set the future-reach bound K to be two.

20 Raha et al.

—— G(Fjo,21p) @ G(—p = Fo,99) G(—p— Gp,21q9) —* G(Up,2 q)

Sample Size vs Runtime Prefix Length vs Runtime

10t

10 20 30 40 50 60

10l |

g To|- -1 % 7o B
£ £

= 3 | A= 3 |
SR g1

¥)

o0 o0

S 102 - - S 102 - -
[o M
> >

< < B

0

10

12

14

Number of prefixes Length of prefixes

Fig. 2: Runtime change with respect to the number of prefixes and prefix lengths

Figure 2 illustrates the runtime variation of TEAL in two cases: increasing the
number of prefixes fixing the length of them and increasing the length of prefixes
fixing the number of them. We observe that to synthesis a larger formula the
time required grows significantly. This trend can be noticed in both the figures.

7 Discussion and Conclusion

We have presented a novel SMT-based algorithm for automatically synthesizing
MTTL specifications from finite system executions. To be useful for efficient mon-
itoring, we ensure that the synthesized formulas are both concise and have low
future-reach. We have shown that our algorithm can synthesize concise formulas
from benchmarks generated from commonly used MTL patterns.

While our algorithm is tailored to synthesize globally separating formulas
particularly useful for monitoring, we can adapt our algorithm easily to syn-
thesize only separating formulas as in the standard temporal logic inference
setting [46,43]. Our algorithm includes all the standard temporal operators that
are typically used in MTL. However, we believe it is possible to improve the
performance of the algorithm by omitting a temporal operator such as U; for
which the encoding can be substantially large.

From a practical point of view, an interesting future direction will be to lift
our techniques to automatically synthesize STL formulas for verification.

Synthesizing Efficiently Monitorable Formulas in MTL 21

References

10.

11.

12.

Ammons, G., Bodik, R., Larus, J.R.: Mining specifications. In: Launch-
bury, J., Mitchell, J.C. (eds.) Conference Record of POPL 2002: The
29th SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, Portland, OR, USA, January 16-18, 2002. pp. 4-16. ACM (2002).
https://doi.org/10.1145/503272.503275, https://doi.org/10.1145/503272.
503275

Arif, M.F., Larraz, D., Echeverria, M., Reynolds, A., Chowdhury, O., Tinelli, C.:
SYSLITE: syntax-guided synthesis of PLTL formulas from finite traces. In: FM-
CAD. pp. 93-103. IEEE (2020)

Asarin, E., Donzé, A., Maler, O., Nickovic, D.: Parametric identification of
temporal properties. In: Proceedings of the Second International Conference
on Runtime Verification. p. 147-160. RV’11, Springer-Verlag, Berlin, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-29860-8'12, https://doi.org/10.
1007/978-3-642-29860-8_12

Baldor, K., Niu, J.: Monitoring dense-time, continuous-semantics, metric temporal
logic. In: RV. Lecture Notes in Computer Science, vol. 7687, pp. 245-259. Springer
(2012)

Barbosa, H., Barrett, C.W., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mo-
hamed, A., Mohamed, M., Niemetz, A., Notzli, A., Ozdemir, A., Preiner, M.,
Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: cvch: A versatile and industrial-
strength SMT solver. In: TACAS (1). Lecture Notes in Computer Science, vol.
13243, pp. 415-442. Springer (2022)

Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo the-
ories. In: Handbook of Satisfiability, Frontiers in Artificial Intelligence and Appli-
cations, vol. 336, pp. 1267-1329. IOS Press (2021)

Bartocci, E., Deshmukh, J.V., Donzé, A., Fainekos, G., Maler, O., Nickovic, D.,
Sankaranarayanan, S.: Specification-based monitoring of cyber-physical systems:
A survey on theory, tools and applications. In: Lectures on Runtime Verification,
Lecture Notes in Computer Science, vol. 10457, pp. 135-175. Springer (2018)
Bartocci, E., Mateis, C., Nesterini, E., Nickovic, D.: Survey on mining sig-
nal temporal logic specifications. Information and Computation 289, 104957
(2022). https://doi.org/https://doi.org/10.1016/j.ic.2022.104957, https://www.
sciencedirect.com/science/article/pii/S0890540122001122

Basin, D.A., Klaedtke, F., Zalinescu, E.: Algorithms for monitoring real-time
properties. In: Khurshid, S., Sen, K. (eds.) Runtime Verification - Second In-
ternational Conference, RV 2011, San Francisco, CA, USA, September 27-30,
2011, Revised Selected Papers. Lecture Notes in Computer Science, vol. 7186, pp.
260-275. Springer (2011). https://doi.org/10.1007/978-3-642-29860-8_20, https:
//doi.org/10.1007/978-3-642-29860-8_20

Basin, D.A., Krstic, S., Traytel, D.: Almost event-rate independent monitoring of
metric dynamic logic. In: RV. Lecture Notes in Computer Science, vol. 10548, pp.
85-102. Springer (2017)

Basin, D.A., Krstic, S., Traytel, D.: AERIAL: almost event-rate independent al-
gorithms for monitoring metric regular properties. In: RV-CuBES. Kalpa Publica-
tions in Computing, vol. 3, pp. 29-36. EasyChair (2017)

Bjgrner, D., Havelund, K.: 40 years of formal methods - some obstacles and some
possibilities? In: FM. Lecture Notes in Computer Science, vol. 8442, pp. 42-61.
Springer (2014)

https://doi.org/10.1145/503272.503275
https://doi.org/10.1145/503272.503275
https://doi.org/10.1145/503272.503275
https://doi.org/10.1007/978-3-642-29860-8_12
https://doi.org/10.1007/978-3-642-29860-8_12
https://doi.org/10.1007/978-3-642-29860-8_12
https://doi.org/https://doi.org/10.1016/j.ic.2022.104957
https://www.sciencedirect.com/science/article/pii/S0890540122001122
https://www.sciencedirect.com/science/article/pii/S0890540122001122
https://doi.org/10.1007/978-3-642-29860-8_20
https://doi.org/10.1007/978-3-642-29860-8_20
https://doi.org/10.1007/978-3-642-29860-8_20

22

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Raha et al.

Bombara, G., Belta, C.: Offline and online learning of signal temporal logic for-
mulae using decision trees. ACM Trans. Cyber-Phys. Syst. 5(3) (mar 2021).
https://doi.org/10.1145/3433994, https://doi.org/10.1145/3433994

Bombara, G., Vasile, C.I., Penedo, F., Yasuoka, H., Belta, C.: A decision tree
approach to data classification using signal temporal logic. In: Proceedings of
the 19th International Conference on Hybrid Systems: Computation and Con-
trol. p. 1-10. HSCC ’16, Association for Computing Machinery, New York,
NY, USA (2016). https://doi.org/10.1145/2883817.2883843, https://doi.org/
10.1145/2883817.2883843

Camacho, A., Mcllraith, S.A.: Learning interpretable models expressed in linear
temporal logic. In: ICAPS. pp. 621-630. AAAI Press (2019)

Camacho, A., Mcllraith, S.A.: Learning interpretable models expressed
in linear temporal logic. Proceedings of the International Conference
on Automated Planning and Scheduling 29(1), 621-630 (May 2021).
https://doi.org/10.1609/icaps.v29i1.3529, https://ojs.aaai.org/index.php/
ICAPS/article/view/3529

Chattopadhyay, A., Mamouras, K.: A verified online monitor for metric temporal
logic with quantitative semantics. In: RV. Lecture Notes in Computer Science, vol.
12399, pp. 383-403. Springer (2020)

Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathsats SMT
solver. In: TACAS. Lecture Notes in Computer Science, vol. 7795, pp. 93-107.
Springer (2013)

Clark, B., Cesare, T.: Satisfiability Modulo Theories, pp. 305—343. Springer Inter-
national Publishing (2018). https://doi.org/10.1007/978-3-319-10575-8'11, https:
//doi.org/10.1007/978-3-319-10575-8_11

Dang, T., Stolz, V. (eds.): Runtime Verification - 22nd International Conference,
RV 2022, Thilisi, Georgia, September 28-30, 2022, Proceedings, Lecture Notes in
Computer Science, vol. 13498. Springer (2022)

Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Robust
online monitoring of signal temporal logic. In: RV. Lecture Notes in Computer
Science, vol. 9333, pp. 55-70. Springer (2015)

Dokhanchi, A., Hoxha, B., Fainekos, G.: On-line monitoring for temporal logic
robustness. In: RV. Lecture Notes in Computer Science, vol. 8734, pp. 231-246.
Springer (2014)

Donzé, A., Ferrere, T., Maler, O.: Efficient robust monitoring for STL. In: CAV.
Lecture Notes in Computer Science, vol. 8044, pp. 264-279. Springer (2013)
Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., Mclsaac, A., Van Campenhout, D.:
Reasoning with temporal logic on truncated paths. In: Hunt, W.A., Somenzi, F.
(eds.) Computer Aided Verification. pp. 27-39. Springer Berlin Heidelberg, Berlin,
Heidelberg (2003)

Fijalkow, N., Lagarde, G.: The complexity of learning linear temporal formulas
from examples. In: ICGI. Proceedings of Machine Learning Research, vol. 153, pp.
237-250. PMLR (2021)

Gaglione, J., Neider, D., Roy, R., Topcu, U., Xu, Z.: Learning linear temporal
properties from noisy data: A maxsat-based approach. In: ATVA. Lecture Notes
in Computer Science, vol. 12971, pp. 74-90. Springer (2021)

Gorostiaga, F., Sanchez, C.: Hlola: a very functional tool for extensible stream
runtime verification. In: Groote, J.F., Larsen, K.G. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems - 27th International Conference, TACAS
2021. Lecture Notes in Computer Science, vol. 12652, pp. 349-356. Springer (2021).
https://doi.org/10.1007/978-3-030-72013-1_18

https://doi.org/10.1145/3433994
https://doi.org/10.1145/3433994
https://doi.org/10.1145/2883817.2883843
https://doi.org/10.1145/2883817.2883843
https://doi.org/10.1145/2883817.2883843
https://doi.org/10.1609/icaps.v29i1.3529
https://ojs.aaai.org/index.php/ICAPS/article/view/3529
https://ojs.aaai.org/index.php/ICAPS/article/view/3529
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-030-72013-1_18

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Synthesizing Efficiently Monitorable Formulas in MTL 23

Havelund, K., Peled, D.: Runtime verification: From propositional to first-order
temporal logic. In: RV. Lecture Notes in Computer Science, vol. 11237, pp. 90—
112. Springer (2018)

Ho, H., Ouaknine, J., Worrell, J.: Online monitoring of metric temporal
logic. In: Bonakdarpour, B., Smolka, S.A. (eds.) Runtime Verification - 5th
International Conference, RV 2014, Toronto, ON, Canada, September 22-25,
2014. Proceedings. Lecture Notes in Computer Science, vol. 8734, pp. 178-
192. Springer (2014). https://doi.org/10.1007/978-3-319-11164-3_15, https://
doi.org/10.1007/978-3-319-11164-3_15

Hoxha, B., Dokhanchi, A., Fainekos, G.: Mining parametric temporal logic proper-
ties in model-based design for cyber-physical systems. Int. J. Softw. Tools Technol.
Transf. 20(1), 79-93 (2018)

Hunter, P., Ouaknine, J., Worrell, J.: Expressive completeness for metric temporal
logic. In: 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.
pp. 349-357 (2013). https://doi.org/10.1109/LICS.2013.41

Kane, A., Chowdhury, O., Datta, A., Koopman, P.: A case study on runtime mon-
itoring of an autonomous research vehicle (ARV) system. In: RV. Lecture Notes in
Computer Science, vol. 9333, pp. 102-117. Springer (2015)

Kempa, B., Zhang, P., Jones, P.H., Zambreno, J., Rozier, K.Y.: Embedding online
runtime verification for fault disambiguation on robonaut2. In: FORMATS. Lecture
Notes in Computer Science, vol. 12288, pp. 196-214. Springer (2020)

Kong, Z., Jones, A., Belta, C.: Temporal logics for learning and detection of anoma-
lous behavior. IEEE Transactions on Automatic Control 62(3), 1210-1222 (2017).
https://doi.org/10.1109/TAC.2016.2585083

Kong, Z., Jones, A., Medina Ayala, A., Aydin Gol, E., Belta, C.: Temporal
logic inference for classification and prediction from data. In: Proceedings of
the 17th International Conference on Hybrid Systems: Computation and Con-
trol. p. 273-282. HSCC ’14, Association for Computing Machinery, New York,
NY, USA (2014). https://doi.org/10.1145/2562059.2562146, https://doi.org/
10.1145/2562059.2562146

Konrad, S., Cheng, B.H.C.: Real-time specification patterns. In: Roman, G., Gris-
wold, W.G., Nuseibeh, B. (eds.) 27th International Conference on Software En-
gineering (ICSE 2005), 15-21 May 2005, St. Louis, Missouri, USA. pp. 372-
381. ACM (2005). https://doi.org/10.1145/1062455.1062526, https://doi.org/
10.1145/1062455.1062526

Koymans, R.: Specifying real-time properties with metric temporal logic. Real
Time Syst. 2(4), 255-299 (1990)

Lima, L., Herasimau, A., Raszyk, M., Traytel, D., Yuan, S.: Explainable online
monitoring of metric temporal logic. In: TACAS (2). Lecture Notes in Computer
Science, vol. 13994, pp. 473-491. Springer (2023)

Linard, A., Tumova, J.: Active learning of signal temporal logic specifications. In:
2020 IEEE 16th International Conference on Automation Science and Engineering
(CASE). pp. 779-785 (2020). https://doi.org/10.1109/CASE48305.2020.9216778
Lutz, S., Neider, D., Roy, R.: Specification sketching for linear temporal logic.
CoRR abs,/2206.06722 (2022)

Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals.
In: Lakhnech, Y., Yovine, S. (eds.) Formal Techniques, Modelling and Analysis
of Timed and Fault-Tolerant Systems. pp. 152—-166. Springer Berlin Heidelberg,
Berlin, Heidelberg (2004)

https://doi.org/10.1007/978-3-319-11164-3_15
https://doi.org/10.1007/978-3-319-11164-3_15
https://doi.org/10.1007/978-3-319-11164-3_15
https://doi.org/10.1109/LICS.2013.41
https://doi.org/10.1109/TAC.2016.2585083
https://doi.org/10.1145/2562059.2562146
https://doi.org/10.1145/2562059.2562146
https://doi.org/10.1145/2562059.2562146
https://doi.org/10.1145/1062455.1062526
https://doi.org/10.1145/1062455.1062526
https://doi.org/10.1145/1062455.1062526
https://doi.org/10.1109/CASE48305.2020.9216778

24

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

53.

56.

57.

Raha et al.

Meel, K.S., Strichman, O. (eds.): 25th International Conference on Theory and
Applications of Satisfiability Testing, SAT 2022, August 2-5, 2022, Haifa, Israel,
LIPIcs, vol. 236. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2022)
Mohammadinejad, S., Deshmukh, J.V., Puranic, A.G., Vazquez-Chanlatte, M.,
Donzé, A.: Interpretable classification of time-series data using efficient enumer-
ative techniques. In: HSCC ’20: 23rd ACM International Conference on Hybrid
Systems: Computation and Control, Sydney, New South Wales, Australia, April
21-24, 2020. pp. 9:1-9:10. ACM (2020). https://doi.org/10.1145/3365365.3382218
de Moura, L.M., Bjgrner, N.S.: Z3: an efficient SMT solver. In: TACAS. Lecture
Notes in Computer Science, vol. 4963, pp. 337-340. Springer (2008)

de Moura, L.M., Bjgrner, N.S.: Satisfiability modulo theories: introduction and
applications. Commun. ACM 54(9), 69-77 (2011)

Neider, D., Gavran, I.: Learning linear temporal properties. In: Bjgrner, N.S.,
Gurfinkel, A. (eds.) 2018 Formal Methods in Computer Aided Design, FM-
CAD 2018, Austin, TX, USA, October 30 - November 2, 2018. pp. 1-10. IEEE
(2018). https://doi.org/10.23919/FMCAD.2018.8603016, https://doi.org/10.
23919/FMCAD.2018.8603016

Nenzi, L., Silvetti, S., Bartocci, E., Bortolussi, L.: A robust genetic algorithm
for learning temporal specifications from data. In: Mclver, A., Horvath, A. (eds.)
Quantitative Evaluation of Systems. pp. 323-338. Springer International Publish-
ing, Cham (2018)

Ouaknine, J., Worrell, J.: Some recent results in metric temporal logic. In: Cassez,
F., Jard, C. (eds.) Formal Modeling and Analysis of Timed Systems. pp. 1-13.
Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

Pnueli, A.: The temporal logic of programs. In: FOCS. pp. 46-57. IEEE Computer
Society (1977)

Raha, R., Roy, R., Fijalkow, N., Neider, D.: Scalable anytime algorithms for learn-
ing fragments of linear temporal logic. In: Fisman, D., Rosu, G. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems. pp. 263-280. Springer
International Publishing, Cham (2022)

Riener, H.: Exact synthesis of LTL properties from traces. In: FDL. pp. 1-6. IEEE
(2019)

Roy, R., Fisman, D., Neider, D.: Learning interpretable models in the property
specification language. In: IJCAIL pp. 2213-2219. ijcai.org (2020)

Rozier, K.Y.: Specification: The biggest bottleneck in formal methods and auton-
omy. In: VSTTE. Lecture Notes in Computer Science, vol. 9971, pp. 8-26 (2016)
Silvetti, S., Nenzi, L., Bortolussi, L., Bartocci, E.: A robust genetic algorithm for
learning temporal specifications from data. CoRR (2017), http://arxiv.org/abs/
1711.06202

Thati, P., Rosu, G.: Monitoring algorithms for metric temporal logic specifications.
In: Havelund, K., Rosu, G. (eds.) Proceedings of the Fourth Workshop on Runtime
Verification, RV@QETAPS 2004, Barcelona, Spain, April 3, 2004. vol. 113, pp. 145—
162. Elsevier (2004). https://doi.org/10.1016/j.entcs.2004.01.029

Xu, Z., Topcu, U.: Transfer of temporal logic formulas in reinforcement learning. In:
Kraus, S. (ed.) Proceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, IJCAT 2019, Macao, China, August 10-16, 2019. pp. 4010—
4018. ijcai.org (2019). https://doi.org/10.24963 /ijcai.2019/557

Yang, H., Hoxha, B., Fainekos, G.E.: Querying parametric temporal logic prop-
erties on embedded systems. In: Nielsen, B., Weise, C. (eds.) Testing Software
and Systems - 24th IFIP WG 6.1 International Conference, ICTSS 2012, Aalborg,

https://doi.org/10.1145/3365365.3382218
https://doi.org/10.23919/FMCAD.2018.8603016
https://doi.org/10.23919/FMCAD.2018.8603016
https://doi.org/10.23919/FMCAD.2018.8603016
http://arxiv.org/abs/1711.06202
http://arxiv.org/abs/1711.06202
https://doi.org/10.1016/j.entcs.2004.01.029
https://doi.org/10.24963/ijcai.2019/557

Synthesizing Efficiently Monitorable Formulas in MTL 25

Denmark, November 19-21, 2012. Proceedings. Lecture Notes in Computer Science,
vol. 7641, pp. 136-151 (2012), https://doi.org/10.1007/978-3-642-34691-0_11

https://doi.org/10.1007/978-3-642-34691-0_11

26 Raha et al.
A Semantics of MTL on infinite signals

This section formalizes the standard continuous semantics of MTL on infinite
system executions. Towards this, we follow the framework of [48]. Note that,
n [48], the authors provided the semantics for the timed-Until operator, and
the semantics for the other temporal operators can be deduced using syntactic
relations. As we do not consider the timed-Until operator in our setting, we
directly provide the semantics for the temporal operators we opt for in our
settings. Given an infinite signal , an MTL formula ¢ and a time point ¢ > 0,

(z,t) Ep — peaxl)

(xz,t) = —p = p¢gz(t)

(z,t) o1 A @2 > (x,1) | ¢1 and (@, 1) |= 2

(z,t) = o1V @2 = (z,t) E 1 or (x,1) = o2

(z,1) | Flap ¢ <= Ft' € [t + a,t + b] such that (z,t') = ¢

(x,t) = Gy @ <~ Vt' €ft+a,t+b],(xz,t')Ep

(1) E o1 Uy o2 < I elt+a,t+b],(zt') =@ and V" € [t,t'], (z,1) E ¢1

We read (z,t) = ¢ as ‘@ satisfies the formula ¢ at time point ¢’. The signal
x satisfies the formula ¢ if and only if it satisfies the formula at time point 0,

ie,z ¢ < (2,0) = .

B Proof of Lemma 1

In this section, we prove Lemma 1 that justifies our choice for the semantics
of MTL on finite signal prefixes. We, in fact, prove a stronger statement from
which Lemma 1 follows: for all ¢t € [0,T), (z1,t) = ¢ if there exists a signal
x € ext(xr) such that (x,t) = .

The proof now proceeds via an induction on the MTL formula ¢.

— For the base case, let ¢ = p € P. Then, for all t € [0,T), if there exists
x € ext(xr) such that (x,t) = p, then (xr,t) ¢ p since (z,t) = ¢ and
thus, (2r,t) E ¢. The same argument extends to the neg operator.

— Let ¢ = @1 A . Then, for all ¢t € [0,T), if there exists @ € ext(xr) such
that (x,t) = ¢1 and (x,t) = w2. Then, (x1,t) =¢ @1 and (x1,t) =f @2 by
induction hypothesis. The same argument extends to the V operator.

— Let ¢ = F, 4% and fix a time point ¢ € [0,T). We have to prove if there
exists a signal € ext(xr) such that, (x,t) = Fl 4, then (zr,t) =
F|4,5 %. Now by definition of |=, 3t' € [t + a,t + b] such that, (z,t') = .
Now there are two cases: (i) t +b > T" in this case, (@1,t) |=f Fla,) %, and
(ii) t 4+ b < T: then, t’ < T and by induction hypothesis, (xr,t’) =¢ ¢ as
(x,t) = 9. Hence, (x1,t) =t @. The case for ¢ = G, 9 can be proved
similarly. ad

Synthesizing Efficiently Monitorable Formulas in MTL 27
C Proof of Lemma 2

In this section, we prove Lemma 2 that shows that an MTL formula ¢ with
fr(p) < K cannot distinguish two signals and their prefixes if they are identical
up to time K. We will prove this by induction on the structure of . In particular,
we will prove the following:

For any K, let ¢ be a formula with fr(p) < K and x and y be two signals
such that (o k] = Y[- Then, for all T' € RZ0 x7 |=¢ o if and only if yp = .

- For the base case, let ¢ = p. Then, p € xr(0) and as x|y x] = Yo, K]
p € y7(0). Hence, yp ¢ p. This can be similarly seen for the case where ¢ = —p.

- The proof for the cases where ¢ = @1 V @5 or ¢ = 1 A o can be derived
easily.

- Let ¢ = Fg 4 ¢1. Let us fix a T such that @t = Fgp ¢ If b > ¢, then
Y1 =t Fla) @ trivially. If not, then there exists a time point ¢ € [a, b] such that
(x1,t) =r @1. Now, let 2’ = z[*] and 3y’ = y[¥ be the signals obtained by shifting
the original signals by —t. Formally, V¢’ € R=°, x/(t') = x(#' +t) and y' (') =
y(t'+1). Note that, @0 x) = Y'j0, x—y- Also, fr(p1) = fr(p)—b< K—b< K—t
and ’(o x4 =t ¢. Then, following induction hypothesis, y'[O,K_t] E¢ ¢1 which
implies that (y,t) ¢ ¢1. Hence, yp ¢ Fia) ¢ The case where ¢ = G, 5 91
can be proved similarly.

- Let ¢ = ¢1 Ujgy) 2. Again, similar to above, fix a T such that @t |=¢
©1 Ulqp) 2. Let us first assume that b < T'. Then, 3t € [a, b] such that (xT,t) =
o and V' € [0,¢], (z1,t') ¢ v1. Now as fr(y1) and fr(ps) are both < K —
b < K —t. Hence again using similar methods as above, one can prove that
(Y1, 1) Fr o2 and V' € [0,], (yr,t') ¢ 1. Hence, yp ¢ o1 Upgp) 2.

D Proof of Lemma 5

In this section, we prove Lemma 5 that proves the correctness of our construction
of Z,(xr) given a prefix @r. Recall that the lemma says, for all ¢t € [0,7),
(zr,t) =t @ if and only if ¢ € I for some I € Z (zr). We prove both directions
together by induction on the structure of the formula (.

For the base case, one can check that for all ¢ € [0,T), t € Z, () if and only
ift € I for some I € Z,(xr) by construction. The proof for the neg operator and
the boolean connectives A and V follow from the correctness of the construction
in the work of [41]. Here, we provide the proofs for two timed-temporal operators
as their semantics differ from the work in [41].

Let ¢ = F4)%. To show the forward direction, let ¢ € I for some I €
Z,(zr). We have to prove that, (xr,t) =t Fla3) 9. In particular, ¢t € Z)(xr) by
definition, i.e., t € (Ulelw(m) I6[a,b]) U[T —b,T). There are two cases: (i)

t € [T —b,T): in this case, t + b > T and by definition of ¢, (z1,t) Fr ¥,
or (ii) t € (UIeIu (@n) 1 © [a,b]): Fix the interval I’ = [t1,t5) € Z,(zr) such
that, t € (I’ © [a,b]). By induction hypothesis, for all ¢’ € I’, (zr,t') ¢ 9.
Now,t <ty —a — t+a<typandt >t;—b — t+0b > t;. Hence,

28 Raha et al.

I' = [t1,t2) D [t +a,t+b]. Hence, 3’ € [t + a,t + b] such that, (xr,t") ¢ ¢ and
henceforth, (xr,t) = .

For the backward direction, we assume that, (zr,t) =t Fiq) ¢ and prove
that, t € I for some I € Z (2r). In particular, we show that t € ZJ(xr) =
(UI€I¢(mT) I & [a,b]) U[T —b,T) and the rest of the argument follows from
the fact that, Z(xr) is obtained by taking the maximal disjoint intervals of
ZJ(x1). Now, by definition of |=¢, there are two possibilities: (i) ¢t +b > T:
then, t € [T —b,T) and hence, t € Z)(xr), or (ii) 3t' € [t + a,t + b] such that,
(zr,t') ¢ 1. Now, by induction hypothesis, ¢' € I for some I € Z,(z1). Let
I =[t1,t2). Now, to —a >t —a >t and t; —b <t — b < ¢. This implies that,
t € [t1 — bty —a) = (I © [a,b]) which proves that, t € Z(xT).

The proof for the operator G can be derived similarly. a

E All the constraints

In this section, we provide the encodings of Ds), = @ff:&k A @Z‘,s,k N P;ES), that
we did not include in the paper.

E.1 Structural constraints

Here we formally introduce the encoding for the structural constraints $*!”. For
each Node i containing operator A\, we define the following two functions:

exactly — one — left(i) = [/\ \/ A /\ /\ =l 5V ﬂli,j/}, and

1<i<n 1<5<i 2<i<n 1<5<5'<n

exactly — one — right(i) = [/\ \/ i A /\ /\ AR ﬁri,j'}

1<i<n 1<5<i 2<i<n 1<5<j'<n

that defines that the node contains exactly one left child and exactly one
right child, respectively.

Now let A = P U U, U By, where Uy denotes the set of unary operators
and B, denotes the set of binary operators. Then the encoding of the structural
constraints contains the following:

Synthesizing Efficiently Monitorable Formulas in MTL 29

/\ \/ a:m] A { /\ /\ —x 8V ﬁxiy,\/}/\ 9)

1<i<n A€A 1<i<n A£N €A
A (Vo[A n A] | ()
1<i<n \peP 1<j<n 1<j<n

/\ \/ Tix — [emactly — one — left(i) A /\ —\ri’jf] A (11)

1<i<n \A€Ux 1<j<n

/\ < \/ Tix — [ea:actly — one — left(i) A exzactly — one — right(i)]) (12)

1<i<n \X€B4

N wim ALy = [\ 2] (13)
1<i<n peEP
1<5<i

Constraint 9 encodes the fact that each node only contains one operator or
one proposition. Constraint 10 imposes that the nodes containing a proposition
do not have any child. Constraint 11 says that the nodes containing a unary
operator contain exactly one child, while constraint 12 enforces that the nodes
containing a binary operator contain exactly one left and exactly one right child.
Finally, Constraint 13 imposes that the neg operator can occur only in front of
propositions.

E.2 Future-reach constraints

Here we formally introduce the constraints for symbolically encoding the future-
reach of the prospective formula ¢. The formula 45’: 5. contains the following:

/\ Tip — [fz = 0]/\

1<i<n

N\ @im Alig) = [fi = fi]A
1<i<n
1<j5<i

/\ (v V@) Alig Arige) = [fi = max(f;, f7)] A
1<i<n
1<4,5'<i
/\ (zip, ANlij) = [fi=f; +bi]A
1<i<n
1<5<i
/\ (i A lz‘,j) — [fz =fi+ bi]/\

1<i<n
1<j<i

(fn < K)

30 Raha et al.

Each line above encodes the future-reach value for each operator using the in-
ductive definition of the future-reach, as described in Section 3. The last line
imposes the fact that the future-reach of the prospective formula is within the
bound K.

E.3 Semantic constraints

Here we introduce the constraints to encode the semantics of the A and the G
operators that we left out in the main text of the paper.
For the A-operator, we have the following constraint:

/\ zipn N A — | /\ comp (i, k) A unions(k, j,5")],
1<i<n 1<5<[8|
1<5,5'<i

This encodes the relation for A operator as described in Table 1. We introduce
an intermediate set of intervals 7, that contains the maximal disjoint intervals of
union of Z_ (x7) and L (). Then~ comp (i, k) denotes that, T (%) is the
complement of the set of intervals in 7y, making it the set containing maximal
disjoint intervals of intersection of. I (%) an('i I (). '

For the G operator where I is encoded using a;, b; we have the following
constraint:

N wic Alig— [N\ union (i, K K') A comp (K k) Al (k, 5)).

1<i<n 1<s<| 8|
1<5<i

based on the relation for the Gy, operator in Table 1. Similar to the encoding

of F|,) operator, we rely on an intermediate set of intervals 7, and 7, encoded
using some auxiliary variables. Also, we use the formula 9Lai’bi](k, J) to encode
that the intervals in 7, can be obtained by performing IS [a, b] to each interval T

in Iw[j (%), where a; = a and b; = b. Then comp(k’, k) encodes that T is the

complement of Z. Finally, the formula union” (i, k', k') encodes that T (x3)
consists of the maximal disjoint intervals obtained by taking the union of the
complement of I};m (%) and {[T' —a,T)}.

Similar to union’ in the semantic constraints for F; operator, the construc-
tion of union” (i, k, k) is similar to that of union(i,j,j’) in that the constraints
involved are similar to Constraints 5 to 7.

F Proof of Lemma 6

The proof of Lemma 6 is a direct consequence of the proofs of the following
claims for the different formulas.

Synthesizing Efficiently Monitorable Formulas in MTL 31

Claim Let + be a satisfying interpretation of wunions(i,4,j’). Then, the set

= {1), et 1.6))s s [t) et . 4)))} comsists of the maximal disjoint
mtervals of the union of IJ = {[e(# i,), o j)l’s)),.. P (téms) (Jms))} and

I’ - {[(’ls) (t_;’,l,s))V . [(té ms) (t; ms))}
Proof. For s1mphcity of the proof, we name «(t7 ,,) as 77, for o € {l,r} and
k € {i,4,7'}, and [7L .77 ..) as I'xm for & € {i,j,j'}. Note that we drop the

Iﬁl m’ 'K,m
identifier s representing the prefix since the prefix is fixed throughout the proof.
For the forward direction, we show that any time point ¢ € I3 ,, belongs
to some I}, € Z; or some I ,» € Ij. Towards contradiction, we assume
that ¢ & IY s for any I, E Z; and ¢t & I'js yyr for any Iy € Zj. Now,
based on Constraint 5, both ’7' m and 77 appear in some intervals in Z; and
Z; as left and right bound, respectlvely We consider two cases based on Where

Tfm and 7/, appear. First, 7; and 7/, both appears w.l.o.g, in Z;. Now,

let I, and I m,+1 be buch that Tim < t< TJ m,+1- Intuitively, this means
that ¢ lies in between (and is adjacent to) the intervals I ,,, and I} ,,, 1. Note
that both 77, ~and T .m,+1 18 not included in Z; since Z; consists of maximal

d15301nt mtervals and [T ml,T]l mi+1] C Lim. Now, based on Constraint 6, 77,

and Tj,ml 41 are included in some intervals in Z;. Note that if they are included
in the same interval, then that interval also contains t raising the contradiction
to our assumption that ¢t & I/ ,,,» for any Iy v € Zjr. Then 77, and Tgl',m1+1
are not included in the same interval in Z;,. Then, there exists I'j/ p, € Z;» and
It a1 € Iy such that,

l l
Jml <7', 2 SU<Tp o1 < Tjmit1

Now note that, 77, .~ and Tj/7m2+1 both are not included in any of the inter-
vals in Z;. Now, based on Constraint 7, both appear in Z;. But that raises the
contradiction to our assumption that t € I ,.

For the other direction, we show that any time point, w.l.o.g, t € I} ,, belongs
to some I}, € Z;. For this, there can be three cases based on whether the
bounds of I’} ,,, appear as bounds in some interval I ,,» € Z; or not.

First, assume that both Tl , and 77 appear as bounds 7, 7! m, and TT , inZy

as stated by Constraint 5. We now clalm that m; = mo meaning that 7, 1 m, and
T

Tim, are bounds of the same intervals. Towards contradiction, let mq + 1 < ms.

Then, 7/, belongs to the interval I'; ,, and based on Constraint 6, and cannot

be one of the bounds of I ,,,. Then, we have le m= Til7m1 SU< T =Tjim

Second, assume that le» m does not appear, while 77, appears as bounds in

,m
7). Now, based on Constraint 6, le»,m appears in one of the intervals I ,,,/ in
Z;. Also, in that case, le-,’m, appears as a left bound in Zj, say Z; ,,, . We now
claim that 7,, > 77,,. Towards contradiction, we assume two cases. In first

case,
<7

l _ l r
Tit ! = i,mq < Tj,m < Tj/,m

i,
contradicting Constraint 6. In the second case,

zm1

l r
Tirm ,—7' <7' <sz1<7'j7m

32 Raha et al.

contradicting Constraint 7. From the two cases, we conclude 7, > 77, and
hence, Til’ml < le-’m <t <7}, <7, Theargument in the third case is similar
to the arguments in the other two cases and can be seen easily.

Claim. Let ¢ be a satisfying interpretation of comp(i,7). Then, the set Z; =

{e(th g o)s et 1))y bt) (8], 4))} consists of the maximal disjoint in-
tervals of the complement of Z; = {[o(t} ;), (51), -, [L(th 0), e(t] 0)}

Proof. We reuse the naming conventions for 7.7) and I'; ,, from the last proof.
For the forward direction, we show that if ¢ € I5 ,, for some I;,, € Z; then
t & I for any I, € Z;. First, let m = 1. Then, if 7'Jl-71 = 0, then Condition 2
gets triggered and 7/, = 77, and 7/, = 7/,. Hence, 77, =7/, <t <7/, =7},
Also, if 'rJlA’1 # 0, then Condition 2 does not get triggered and Til’l = 0 and
T = le-yl. Hence, 0 = TZ-l,l <t<7/y = 7}71. For m # 1, the reasoning works
similarly.

For the other direction, we show that if ¢ € I, for some I, € Z; then
t & Iy for any I v € Z;. The proof for this direction is almost identical to
the proof for the forward direction and is a simple exercise.

Claim. Let ¢« be a satisfying interpretation of &[®?ls(k3) Then, the set
i = Aty et 4)), o et o), ety)} consists of the maximal
disjoint intervals by applying I © [a,b] to the intervals I of Z; =
{[L(té',l,s)7 L(;,1,3))’) [L(té',m,s)’ L(tg,m,s))}‘

Proof. The proof of this result follows by construction.

The proofs for the operations intersection and cond — int can be derived
using the proofs for the previous operations.

G NP-hardness for MTL(Gy, V, —)

To prove the NP-hardness of SYNTL, for MTL(Gy, V, —), we establish the NP-
hardness of an easier problem where the future-reach bound is relaxed, which is
the following: given a sample S and a size bound B, does there exist a formula
¢ in MTL(Gy, V,) such that ¢ is G-sep for S, and |p| < B? Towards this,
we show a polynomial time reduction from the hitting set problem, a classical
NP-complete problem in the literature. To this end, let us first define the hitting
set decision problem: given C4,...,C, subsets of [1,¢] and k € N, does there
exist H subset of [1,£] of size at least k such that for every j € [1,n] we have
H NC;#0. In that case, we say that H is a hitting set.

We construct a reduction from the hitting set problem. Let C1i,...,C,
subsets of [1,¢] and k& € N. Let us consider the set of propositions to be
P = {po,p1,---,pe}.- We construct the sample S = (P,N) with T" = [+ 1
as follows: for each j € [1,n] we let [1,4]\ Cj = {aj1 < -+ < ajm, }, and define
a positive signal prefix of the form

u; =0:{po};a;1: {pa“}; 3 @Gy {Paj,m]. 1.

Synthesizing Efficiently Monitorable Formulas in MTL 33

Let P = {uq,...,un} be the set of all the positive signal prefixes. There is a
single negative signal prefix, which is of the form

v=0:{po};1:{p1};2:{p2} ;... ;€:{pe}.

that means in v, only proposition p; is true. We let N denote the singleton set
containing v at time interval [i,7 + 1).

We claim that there exists a hitting set of size at most k if and only if
there exists a formula in MTL(Gy, V, —) of size at most 3k — 1 that is globally
separating for S, i.e., satisfies u;’s at all time-points and does not satisfy v at
some time-point.

Let H = {c1,...,cx} be a hitting set of size k with ¢; < ¢o < -+ < ¢, we
construct the formula

¢ = (7pe; V Gog (- V Giog 7Pey,))

We argue that ¢ globally separates u; ... u, from v and has size 3k — 1. Indeed,
the fact that H is a hitting set means that for every j € [1, n], there exists ¢ such
that ¢; € H. This implies that u; satisfies Gg ¢ —pc, globally, hence ¢ as well.
Also, v does not satisfy ¢ at position c;.

Conversely, let ¢ be a G-sep formula in MTL(Gy, V, —) of size 3k — 1. Follow-
ing [25], we can assume that ¢ is of the form above. Because it does not satisfy
v, we have ¢1 < ¢g < +++ < ¢. We let H = {c1,...,c,}, and argue that H is
a hitting set. To prove that H is a hitting set, we need to prove that, for every
J € [1,n], we have H N C; # 0. Now as ¢ is G-sep, for every j € [1,n|, we have
(uj,t) = ¢ for all t € [0,¢]. Then there exists a ¢; that does not appear in u;,
implying the fact that ¢; € H N C; by the construction of u;.

We illustrate the above idea via an example. Let [be four and Cy,Cy, C3 C
[1,4] such that, C; = {1,2,3},Cy = {2,3,4} and C3 = {1,4}. Then, we construct
the sample S with T =5 as follows:

Po P4
U f } i
0 4 5
Po P1
uy f } {
0 1 5
Po D2 p3
(%) F } } i

34 Raha et al.

Po D1 D2 P3 P4

where w1, us, us are positive prefixes and v is the negative prefix. Now note
that a hitting set for Cy,C5,Cs is H = {2,4} such that, |H| = 2. Then the
corresponding G-sep formula for S is ¢ = —pa V Gig 4] ~ps-

	Synthesizing Efficiently Monitorable Formulas in Metric Temporal Logic

