

A Framework for the Competitive Analysis of Model Predictive Controllers

Stijn Bellis[®], Joachim Denil[®], Ramesh Krishnamurthy^(⊠)[®], Tim Leys[®], Guillermo A. Pérez[®], and Ritam Raha[®]

> University of Antwerp - Flanders Make, Antwerp, Belgium ramesh.krishnamurthy@uantwerpen.be

Abstract. This paper presents a framework for the competitive analysis of Model Predictive Controllers (MPC). Competitive analysis means evaluating the relative performance of the MPC as compared to other controllers. Concretely, we associate the MPC with a regret value which quantifies the maximal difference between its cost and the cost of any alternative controller from a given class. Then, the problem we tackle is that of determining whether the regret value is at most some given bound. Our contributions are both theoretical as well as practical: (1) We reduce the regret problem for controllers modeled as hybrid automata to the reachability problem for such automata. We propose a reachabilitybased framework to solve the regret problem. Concretely, (2) we propose a novel CEGAR-like algorithm to train a deep neural network (DNN) to clone the behavior of the MPC. Then, (3) we leverage existing reachability analysis tools capable of handling hybrid automata with DNNs to check bounds on the regret value of the controller.

Keywords: Competitive analysis \cdot Hybrid automata

1 Introduction

An optimal control problem (OCP) deals with finding a function u(t), called a *control law* that assigns values to control variables for every time step $t \in \mathbb{R}_{\geq 0}$. The control law should minimize a given cost function $J[x(\cdot), u(\cdot), t_0, t_f]$ evaluated for a time interval (t_0, t_f) and subject to the state-equation constraints $\dot{x}(t) = f[x(t), u(t), t]$. Model predictive controllers (MPC) solve such a control problem for a given f. This paper presents an approach for the competitive analysis of MPC. Competitive analysis, in this context, means evaluating the relative performance of the MPC as compared to other controllers. Referring to the OCP, our approach assumes that a control law u(t) is given to us. Further, we associate to u(t) a *regret value*, which quantifies the maximal difference between its cost and the cost of any alternative control law from a given class C. Formally, the regret of u(t) is: $Reg(u) \coloneqq \sup_{c \in C} \sup_{t_f \in \mathbb{R}_{\geq 0}} J[x(\cdot), u(\cdot), t_0, t_f] - J[x(\cdot), c(\cdot), t_0, t_f]$. If Reg(u) < r, then we say that the control law u(t) is *r*-competitive.

In this work, we first show that the *r*-competitivity problem for controllers modeled as hybrid automata is interreducible with the reachability problem for hybrid automata. It follows that the r-competitivity problem is undecidable. Fortunately, this also points to using approximate reachability analysis tools to realize approximate competitive analysis. Based on the latter, we propose a counterexample-guided abstraction refinement (CEGAR) framework that abstracts a given MPC using a deep neural network (DNN) trained to clone the behavior of the MPC. This abstraction allows us to use reachability analysis tools such as Verisig [13] to overapproximate the regret value of the abstracted controller. As usual with CEGAR approaches, the refinement step is the main challenge: If the regret is deemed too high (and Verisig finds a real example of this), then this might be due to our abstraction of the controller as a DNN, the overapproximation incurred by the reachability tool, or it might be a real problem with the MPC. In our proposal, when we cannot match the high-regret example to a behavior of the MPC, we use the output of the reachability analysis tool to augment the dataset used for training the DNN.

As a final contribution, we report on a prototype implementation of our CEGAR framework using Verisig. We have used this prototype to analyze MPC for two well-known control problems. While the approach is promising, we conclude that further tooling support is required for the full automation of the framework.

Related Work. Chen et al. 2022 [5] conducted a survey on recent advancements in verifying cyber-physical systems and identified as understudied the verification of control systems whose performance is measured using cost functions. Indeed, we did not find many works on the verification of controllers with respect to the cost functions used to obtain them from an OCP instance. Further, to the best of our knowledge, there have been no previous works on the formal analysis of regret in hybrid systems. A notable exception is the recent work of Muvvala et al. [16] who propose regret minimization as a less pessimistic objective for robots involved in collaborations (e.g., with humans), as opposed to a sole emphasis on worst-case optimization. However, their regret analysis focuses on a higher planning level, distinct from the hybrid-dynamics level of the system, making it closer to the work of Hunter et al. [12] rather than the present one.

Behavioral cloning, also known as imitation learning, is a topic of increasing interest within artificial intelligence (see, e.g. [3,17,18]). We do not claim to have a new behavioral cloning algorithm. Rather, we have integrated a data aggregation step into our CEGAR algorithm for the competitive analysis of hybrid automata. Interestingly, contrary to previous uses of DNNs as proxies for MPC [6,13], we have observed that a successful competitive analysis (i.e., the tool says the controller is *r*-competitive for a small enough *r*) suggests one can use the DNN instead of the MPC! Although this does not guarantee that the MPC itself is *r*-competitive, the DNN demonstrates competitiveness. Moreover, evaluating the DNN to compute the control law proves to be relatively efficient.

2 Hybrid Automata and Competitive Analysis

A hybrid automaton (HA, for short) is an extension of a finite-state automaton equipped with a finite set of real-valued variables. The values of the variables change discretely along transitions and they do so continuously, over time while staying in a state. Formally it is a tuple $(Q, I, T, \Sigma, X, jump, flow, inv)$, where:

- Q is a finite set of states and $I \subseteq Q$ is the subset of initial states,
- \varSigma is a finite alphabet,
- $T \subseteq Q \times \Sigma \times Q$ is a set of transitions, and
- X is a finite set of real-valued variables. We write $V \subseteq \mathbb{R}^X$ to denote the set of all possible valuations of X.
- jump : $T \to Op$ maps transitions to a set of guards and effects on the values of the variables. That is, $Op \subseteq V^2$ and for a transition $\delta \in T$, jump $(\delta) =$ (guard, effect) implies that δ is "enabled" if the current valuation is guard and effect is the valuation after the transition. Intuitively, jump denotes the discrete changes in the variables along transitions. Usually, the guards and effects are encoded as first-order predicates over the reals, e.g. jump $(\delta) =$ (x > 2, x + 4) denotes the set $\{(v, v') \in V^2 \mid v(x) > 2$ and $v'(x) = v(x) + 4\}$.
- flow : $Q \to F$, with $F \subseteq \{f : \mathbb{R}_{>0} \to V\}$, maps each state $q \in Q$ to a set F of functions f_q that give the continuous change in the valuation of the variables while in state q. Usually, the functions f_q are encoded as systems of first-order differential equations, e.g. $\dot{x} = 5$ denotes functions¹ f(t)(x) = 5t + c, where $c \in \mathbb{R}_{>0}$ is the value of x at time t = 0.
- $inv: Q \to 2^V$ maps each state $q \in Q$ to an invariant that constrains the possible valuations of the variables in q. Similar to jump, inv is usually encoded as first-order predicates over the reals.

Configurations and Runs. A configuration is a pair (q, v) where $q \in Q$ and $v \in V$ is a valuation of the variables in X. A configuration (q, v) is valid if $v \in inv(q)$. Let (q, v) and (q', v') be two valid configurations. We say (q', v') is a discrete successor of (q, v) if $\delta = (q, a, q') \in T$ for some $a \in \Sigma$ and $(v, v') \in jump(\delta)$. Similarly, (q', v') is a continuous successor of (q, v) if q = q' and there exist $t_0, t_1 \in \mathbb{R}_{>0}$ and $f_q \in flow(q)$ such that $f_q(t_0) = v, f_q(t_1) = v'$ and for all $t_0 \leq t \leq t_1, f_q(t) \in inv(q)$.

A run ρ is a sequence of configurations $(q_0, v_0)(q_1, v_1) \dots (q_n, v_n)$ such that $q_0 \in I$, v_0 assigns 0 to all variables and, for all $0 \leq i < n$, (q_{i+1}, v_{i+1}) is a discrete or continuous successor of (q_i, v_i) . The REACH decision problem asks, for a given hybrid automaton A and configuration (q, v), whether there is a run of A whose last configuration is (q, v).

Parallel Composition. Let $A_i = (Q_i, I_i, T_i, \Sigma_i, X_i, jump_i, flow_i, inv_i)$ for i = 1, 2 be two HA. Then, $A = (Q, I, T, \Sigma, X, jump, flow, inv)$ is the parallel composition of A_1 and A_2 , written $A = A_1 || A_2$, if and only if:

¹ Note that if X contains more variables than just x, this function is not unique.

- $-Q = Q_1 \times Q_2$ and $I = I_1 \times I_2$,
- $-\Sigma = \Sigma_1 \cup \Sigma_2$ and $X = X_1 \cup X_2$.
- The transition set T contains $(\langle q_1, q_2 \rangle, \sigma, \langle q'_1, q'_2 \rangle)$ if and only if there are $i, j \in \{1, 2\}$ such that $i \neq j$ and:
 - either $\sigma \in \Sigma_i \setminus \Sigma_j$, $(q_i, \sigma, q'_i) \in T_i$, and $q_j = q'_j$;
 - or $\sigma \in \Sigma_i \cap \Sigma_j$, $(q_i, \sigma, q'_i) \in T_i$, and $(q_j, \sigma, q'_j) \in T_j$.
- The jump function is such that, for $\delta = (\langle q_1, q_2 \rangle, \sigma, \langle q'_1, q'_2 \rangle)$, we have that:
 - either $\sigma \in \Sigma_i \setminus \Sigma_j$ and $jump(\delta) = jump_i(\langle q_i, \sigma, q'_i \rangle)$ for some $i, j \in \{1, 2\}$ with $i \neq j$,
 - or $\sigma \in \Sigma_i \cap \Sigma_j$ and $jump(t) = jump_1(\langle q_1, \sigma, q'_1 \rangle) \cap jump_2(\langle q_2, \sigma, q'_2 \rangle).$
- Finally, $flow(\langle q_1, q_2 \rangle) = flow_1(q_1) \cap flow_2(q_2)$, and
- $inv(\langle q_1, q_2 \rangle) = inv_1(q_1) \cap inv_2(q_2).$

2.1 The Cost of Control

In this work, we use HA to model hybrid systems and controllers. In particular, we henceforth assume any HA $A = (Q, I, T, \Sigma, X, jump, flow, inv)$ modelling a hybrid system has a designated cost variable $J \in X$. We make no such assumption for HA used to model controllers. Observe that from the definition of parallel composition, it follows that if A models a hybrid system, then B = A || C also models a hybrid system—i.e. it has the cost variable J—for any HA C.

The following notation will be convenient: For a run $\rho = (q_0, v_0) \dots (q_n, v_n)$ we write J_{ρ} to denote the value $v_n(J)$. Further, we write $\rho \in A$, where ρ is a run of the hybrid automaton A. Now, the maximal and minimal cost of a HA A respectively are $\overline{J(A)} := \sup_{\rho \in A} J_{\rho}$ and, $J(A) := \inf_{\rho \in A} J_{\rho}$.

2.2 Regret

Fix a hybrid-system HA $A = (Q, I, T, \Sigma, X, jump, flow, inv)$. We define the *(worst-case) regret Reg(U)* of a controller HA U as the maximal difference between the (maximal) cost incurred by the parallel composition of A and U—i.e. the controlled system—and the (minimal) cost incurred by an alternative controller HA from a set \mathcal{C} : $Reg(U) \coloneqq \sup_{U' \in \mathcal{C}} (\overline{J(A \mid\mid U)} - \underline{J(A \mid\mid U')})$. The REGRET problem asks, for given A, U, \mathcal{C} , and $r \in \mathbb{Q}$, whether $\overline{Reg(U)} \geq r$.

3 Reachability and Competitive Analysis

In this section, we establish that the reachability and regret problems are interreducible. While this implies an exact algorithm for the competitive analysis of hybrid automata does not exist, it suggests the use of approximation algorithms for reachability as a means to realize an approximate analysis.

Theorem 1. Let C be the set of all possible controllers. Then, the REGRET problem reduces in polynomial time to the REACH problem.

Fig. 1. Gadget for simulating any possible controller

Proof (of Theorem 1). Given a hybrid-system HA A, a controller U, a set of all possible controllers \mathcal{C} and a regret bound $r \in \mathbb{Q}$, we will construct another HA $A' = (Q', I', T', \Sigma, X', jump', flow', inv')$ and a target configuration (q', v) of A' such that, (q', v) is reachable in A' if and only if Reg(U) < r in $A \mid | U$. Let us write $A = (Q, I, T, \Sigma, X, jump, flow, inv)$ and note that $J \in X$ because A is a hybrid-system HA. We extend the automaton $A \mid | U$ with a gadget to obtain A'. The idea is as follows: for every variable $y \in Y$ of $A \mid | U$, we add a copy of it in the variable set X' of A' that simulates any possible choice of value for that variable by an alternative controller U'. The variable $J' \in X'$ calculates the cost of that alternative controller. Formally, $X' = Y \cup \{y' \mid y \in Y\}$.

To simulate any possible valuation of the variables, we introduce the gadget given in Fig. 1. For every variable x'_i such that x_i is a variable in U, the gadget contains two states $q^+_{x'_i}$ and $q^-_{x'_i}$. Then, $flow'(q^+_{x'_i})$ contains $x'_i = 1$ and $x'_j = 0$ for all $j \neq i$. Intuitively, this state allows us to positively update the value of x'_i to any arbitrary value. Similarly, $flow'(q^-_{x'_i})$ contains $x'_i = -1$ and $x'_j = 0$, $\forall j \neq i$, which allows it to negatively update the value of x'_i .

Now, we add a "sink" state q_{reach} and make it reachable from all the other states using transitions $\delta'_i \in T'$ such that $jump'(\delta'_i)$ contains guard of the form $J - J' \geq r$. Finally, from every state $q' \in Q'$, we add the option to go into its own copy of the gadget, set the values of the variables to any desired value and come back to the same state.

Note that if $(q_{\text{reach}}, \mathbf{0})$ is reachable in A', via a run $\rho \in A'$, then $J_{\rho} - J'_{\rho} \geq r$. As the gadget does not update the value of J and J', it is easy to see that $Reg(U) \geq r$. Now, if $(q_{\text{reach}}, \mathbf{0})$ is not reachable that means, $J_{\rho} - J'_{\rho} < r$ for all $\rho \in A'$. Now, as all possible controllers (in fact, all possible configurations of variables from U) can be simulated in A', it is easy to see that Reg(U) < r. \Box

Interestingly, the construction presented above does not preserve the property of being *initialized*. Intuitively, an initialized hybrid automaton is one that "resets" a variable x on transitions between states which have different flows for x. Alas, we do not know whether an alternative proof exists which does preserve the property of being initialized (and also being rectangular, a property which we do not formally define here). Such a reduction would imply the regret problem is decidable for rectangular and initialized hybrid automata.

We now proceed to stating and proving the converse reduction.

Theorem 2. The REACH problem reduces in polynomial time to the REGRET problem.

$$c = 0, J = 0 \overset{\frown}{\bigcirc} \underbrace{q_i}_{c \ge 1, J = 1} A \xrightarrow{v, J = 2} \underbrace{q_T}_{q_T}$$

Fig. 2. Reduction from REACH to REGRET

Proof (of Theorem 2). Given a HA A and a target configuration (q, v), we will construct a HA A' and a controller U such that $Reg(U) \ge 2$ with respect to $A' \mid \mid U$ if and only if (q, v) is reachable in A. The reduction works for any set C of controllers that contains at least one controller that sets c to 0 all the time.

First, we add two states to A' so that $Q' = Q \cup \{q_i, q_T\}$. In A', q_i has a self-loop that can be taken if the value of c is 0 and the effect is that J = 0 (see Fig. 2). From q_i , we can also transition to the initial states of A if $c \ge 1$, and in doing so, we set J to 1. Finally, from the target state q in A, we can go to the new state q_T if the target valuation v is reached, and that changes the valuation of J to 2. The valuation of J does not change within A.

Note that the minimum cost incurred by a controller that constantly sets c to 0 in A' is 0, which is achieved by the run that loops on q_i . Now, if (q, \boldsymbol{v}) is reachable in A via run $\rho \in A$, then the maximum cost incurred by a controller that sets c to 1 occurs along a run $q_i \cdot \rho \cdot q_T$ and is 2, making $Reg(U) \ge 2$. On the other hand, if (q, \boldsymbol{v}) is not reachable in A, then the maximal value of J along any such run is 1, resulting in Reg(U) < 2. Our constructed controller U is such that it sets c to 1 all the time, and the above arguments give the desired result. \Box

Since the reachability problem is known to be undecidable for hybrid automata in general [10], it follows that our regret problem is also undecidable.

Corollary 1. The REGRET problem is undecidable.

4 CEGAR-Based Competitive Analysis

We present our CEGAR approach to realize approximate competitive analysis. To keep the discussion simple, we focus on continuous systems, specifically singlestate hybrid automata. Since our goal is to approximate the regret of MPCs, we model controllers as hybrid automata that sample variable values at discretetime intervals and determine control variable values using a deep neural network (DNN) trained to behave as the MPC. Concretely, our approach specializes the reduction in the proof of Theorem 1: We will work with a hybrid automaton \mathcal{D} that abstracts the behavior of the controller using a DNN, and a hybrid automaton \mathcal{N} that abstracts the behaviors of all alternative controllers. The overview of our framework is depicted in Fig. 3a.

4.1 Initial Abstraction and Analysis

Our proposed framework begins with the abstraction of the controller as a hybrid automaton \mathcal{D} and the alternative controllers as \mathcal{N} . Each of these automata are

(b) Competitive analysis toolchain

Fig. 3. Flowchart depictions of our approach and our toolchain implementing it; We use ANSI/ISO standard flowchart symbols: the parallelogram blocks represent inputs/outputs, and the rectangular blocks represent processes or tools

assumed to have a cost variable, say $J_{\mathcal{D}}$ for \mathcal{D} and $J_{\mathcal{N}}$ for \mathcal{N} . For a given value $r \in \mathbb{R}$, if we want to determine whether \mathcal{D} is r-competitive then we add to $\mathcal{A} = \mathcal{D} || \mathcal{N}$ a new cost variable $J = J_{\mathcal{N}} - J_{\mathcal{D}}$. As is argued in Theorem 1, \mathcal{D} should be r-competitive if and only if \mathcal{A} can reach a configuration where the value of J is larger than r. Hence, we can apply any reachability set (overapproximation) tool to determine the feasibility of such a configuration.

4.2**Reachability Status**

If the reachability tool finds that a configuration with $J \ge r$ is reachable in \mathcal{A} , we say it concludes \mathcal{A} is *unsafe*. In that case, we will have to process the reachability witness. Otherwise, \mathcal{A} is *safe*, and we can stop and conclude that \mathcal{D} is *r*-competitive. Interestingly, \mathcal{D} can now be used as an *r*-competitive replacement of the original controller! It is important to highlight that behavior cloning does not provide any guarantees regarding the relationship between the MPC and the DNN within \mathcal{D} . Consequently, even if we have evidence supporting the rcompetitiveness of \mathcal{D} , we cannot infer the same for the MPC itself.

In the context of MPCs, this result is already quite useful. This is because MPCs have a non-trivial *latency* and memory usage before choosing a next valuation for the control variables (see, e.g. [11, 14]). In our implementation described in the following section, \mathcal{D} takes the form of a DNN. As DNNs can be evaluated rather efficiently, using the DNN instead of the original MPC is desirable.

4.3 Counterexample Analysis and Refinement

If \mathcal{A} is deemed unsafe, we expect the reachability tool to output a counterexample in the form of a run. There is one main reason why such a run could be *spurious*, i.e. it is not a witness of the MPC not being *r*-competitive. Namely, the abstractions \mathcal{D} (representing the MPC) or \mathcal{N} (representing alternative controllers) might be too coarse. For the specific case of \mathcal{D} , where a DNN is used to model the MPC, we describe sufficient conditions to determine if the counterexample is indeed spurious. If the counterexample is indeed deemed spurious, we can refine our abstraction by incorporating new data obtained from the counterexample and retraining the DNN. In general, though, refining \mathcal{D} and \mathcal{N} falls into one of the tasks for which our framework does not rely on automation.

4.4 Human in the Loop

There are three points in the framework, where human intervention is needed.

Modelling and Specification. First, the task of obtaining initial abstractions \mathcal{D} and \mathcal{N} of the controller and all alternative controllers, respectively, does require a human in the loop. Indeed, crafting hybrid automata is not something we expect from every control engineer. In our prototype described in the next section, we mention partial support for obtaining \mathcal{D} and \mathcal{N} automatically when the MPC is given in the language of a particular OCP and optimization library.

Reachability Analysis. Second, reachability being an undecidable problem, most reachability analysis tools can not only output safe and unsafe as results. Additionally, they might output an "unknown" status. In this case, revisiting the abstractions \mathcal{D} and \mathcal{N} , or even changing the options with which the tool is being used may require human intervention. In fact, we see this as an additional abstraction-refinement step which is considerably harder to automate since there is an absence of a counterexample to work with.

Abstraction Refinement. Finally, our framework does not say what to do if the counterexample being spurious is due to \mathcal{N} being too coarse an approximation. This scenario can occur when \mathcal{N} is purposefully modeled to discretize or approximate certain behaviors of alternative controllers to facilitate reachability analysis. However, for \mathcal{D} , we offer automation support by proposing the retraining of our DNN in the implementation. It might actually be needed to change the architecture of the DNN to obtain a better abstraction. This process can be automated, as increasing the number of layers is often sufficient according to the universal approximation theorem [4].

5 Implementation and Evaluation

We now present our implementation of the CEGAR-based competitive analysis method presented in the previous section, along with two case studies used for evaluation: the cart pendulum and an instance of motion planning.

5.1 Competitive Analysis Toolchain

Figure 3b gives a visual depiction of the toolchain in the form of a flowchart. Starting from the top, D.xml, N.xml are XML files encoding hybrid automata \mathcal{D} and \mathcal{N} , respectively, in the SpaceEx modeling language [8]. The automaton \mathcal{D} represents the controller, which could be a model predictive controller (MPC), and \mathcal{N} represents a class of controllers that the MPC is compared against see also Sect. 4.1. We use the HyST [2] translation tool for hybrid automata to generate the parallel composition $\mathcal{D} \parallel \mathcal{N}$ (encoded in DxN.xml, again in the SpaceEx language). The composed automaton, along with the trained DNN and the property to be verified, are fed as inputs to Verisig. Verisig [13] is a tool that verifies the safety properties of closed-loop systems with neural network components. The tool takes a hybrid automaton, a trained neural network, and property specification files as inputs. It performs the reachability analysis and provides safety verification result. We then parse the output of Verisig to determine whether \mathcal{D} is competitive enough (parser.py). If this is not the case, we realize a sound check to determine if the counterexample is spurious, in which case we use it to extend our dataset and further train the DNN.

5.2 Initial Abstraction and Training

Our toolchain is finetuned to work well for hybrid systems modeled in a tool called *Rockit* and MPCs obtained using the same tool. Rockit, which stands for Rapid Optimal Control Kit, is a tool designed to facilitate the rapid prototyping of optimal control problems, including iterative learning, model predictive control, system identification, and motion planning [9].

Our toolchain includes a utility that interfaces with the API of Rockit to automatically generate the hybrid automata \mathcal{D} and \mathcal{N} from a model of a control problem. While the use of Rockit is convenient, it is not required by our toolchain.

Based on a dataset (in our examples, we obtain it from Rockit), we train a DNN using *behavioral cloning*: we try to learn the behavior of an *expert* (in our case, the MPC) and replicate it. For this, we make use of the *Dagger algorithm* [18], which, after an initial round of training on the dataset from Rockit, will simulate traces using the DNN. The points that the neural network visits along these traces are then given to the expert, and the output of the expert is recorded. These new points and outputs are appended to the first dataset, and this new dataset is used to train a second DNN. This iterative process is done multiple times to make the DNN more robust. In all of our experiments, the TensorFlow framework [1] was used for the creation and training of the DNN.

5.3 Reachability Status

The regret property, encoded as a reachability property as is done in the proof of Theorem 1, is specified in the property file **Property.yml**, which also includes the initial states of $\mathcal{D} \mid\mid \mathcal{N}$. Verisig provides three possible results: "safe" if no property violation is found, "unsafe" if there is a violation, and "unknown" if the property could not be verified, potentially due to a significant approximation error. In the latter two cases, a counterexample file (CE file) is generated.

5.4 Counterexample Analysis and Retraining

If the result is "unsafe", the next step is to compare the counterexample trajectory against the dataset generated from the controller code. If a matching trajectory is found, it indicates a real counterexample, meaning that this trajectory could potentially occur in the actual controller, and no further action is required. If a matching trajectory is not found, then it is a spurious counterexample that requires either retraining the DNN or fix(es) in $\mathcal{D} || \mathcal{N}$. Our toolchain automatically validates the counterexample by comparing the trajectories from Verisig and the controller as implemented in Rockit. To do so, since Rockit uses the floating-point representation of real numbers, we choose a decimal precision of $\epsilon = 10^{-3}$ for the comparison. In the case of a spurious counterexample that requires retraining the DNN, we update the existing dataset using Rockit to obtain additional labeled data based on the trajectory from the CE file.

The CE file from Verisig represents state variable values using interval arithmetic, while the controller dataset contains state variable values in \mathbb{R} without intervals. To accommodate this difference, we choose to append to the dataset new entries: (a) the lower bounds of input intervals, (b) the upper bounds, and (c) a range² of intermediate input values within the intervals. For each of these, we also include the corresponding controller outputs. The generation of the updated dataset and the retraining of the DNN are performed automatically by our toolchain. A DNN trained on the new dataset is then fed to Verisig again along with DxN.xml and the Property.yml. This way, the CEGAR loop is repeated until one of the following conditions is true: (a) the counterexample is real, or (b) a maximum number of retraining iterations (determined by the user) is reached.

5.5 Experiments

In the sequel, we use our tool to analyze two control problems that have been implemented using the Rockit framework. The research questions we want to answer with the forthcoming empirical study are the following.

- **RQ1** Can we have a fully automated tool to perform the competitive analysis?
- **RQ2** Is the toolchain scalable? Why or why not?
- **RQ3** Does the approach help to improve confidence in (finite-horizon) competitivity of controllers?
- RQ4 Does the approach help find bugs in controller design?

We now briefly introduce the two case studies, their dynamics, and how each of them are modeled so that our toolchain can be used to analyze them.

² Our toolchain splits each interval into n equally large segments and adds all points in the resulting lattice. In our experiments, we use n = 4.

Cart pendulum is a classic challenge in control theory and dynamics [7]. In it, an inverted pendulum is mounted on a cart that can move horizontally via an electronic servo system. The objective is to minimize a cost $J = F^2 + 100 * pos^2$, where F is the force applied to the cart and pos indicates the position of the cart. The values of F and pos are constrained within the range of [-2, 2]. The dynamics of the cart correspond to the physics of the system and depend on the mass of the cart and the pendulum and the length of the pendulum.

While the proof of Theorem 1 provides a sound way to model all alternative controllers in the form of \mathcal{N} , the construction combines continuous dynamics and non-determinism. Current hybrid automata tools do not handle non-trivial combinations of these two elements very well. Hence, we have opted to discretize the choice of control values for alternative controllers. Every time the DNN is asked for new control variable values in \mathcal{D} , the automaton \mathcal{N} non-deterministically chooses new alternative values from a finite subset fixed by us a priori.

Motion planning involves computing a series of actions to move an object from one point to another while satisfying specific constraints [15]. In our case study, an MPC is used to plan the motion of an autonomous bicycle that is expected to move along a curved path on a 2D plane using a predefined set of waypoints. To prevent high-speed and skidding, the velocity (V) and the turning rate (δ , in radians) are constrained in the ranges $0 \le V \le 1$ and $-\pi/6 \le \delta \le \pi/6$. The objective is to minimize the sum of squared estimate of errors between the actual path taken by the bicycle and the reference path. Intuitively, the more the controller deviates from the reference path, the higher its cost.

Like in the cart pendulum case study, we discretize the alternative control variable valuations. A big difference is that the cost has both a *Mayer term* and a *Lagrangian* that depend on the location of the bicycle and the waypoints in an intricate way. In terms of modelling, this means that \mathcal{D} and \mathcal{N} have to "compute" closest waypoints relative to the current position of the bicycle.

Discussion. Towards an answer for **RQ1**, we can say that while our toolchain³ somewhat automates our CEGAR, it still requires manual work (e.g. the initial training and choice of DNN architecture). Moreover, in the described case studies, we did not observe an MPC DNN that is labeled as competitive. This may be due to (over)approximations incurred by our framework and our use of Verisig. Despite this, we can answer **RQ4** positively as our toolchain allowed us to spot a bug hidden in the Rockit MPC solution for the cart pendulum. We observed in early experiments that the MPC was not competitive and short (run) examples of this were quickly found by Verisig. We then found that the objective function in Rockit was indeed not as intended by the developers.

The DNNs do show a trend towards copying the behavior of the MPC (see Fig. 4) even though we retrain a new DNN from scratch after each (spurious)

³ All graphs and numbers can be reproduced using scripts from: https://doi.org/10. 5281/zenodo.8255730.

Fig. 4. Boxplots showing the training losses of all DNNs against all test sets

counterexample obtained via Verisig and we (purposefully) randomize the choice of test and training set in each iteration. We do this to increase variability in the set of behaviors and the counterexamples used to extend the dataset. In the cart pendulum case study, we observe that in the iterations 2, 7, and 11, the number of discrete time steps during which the corresponding DNN can act while remaining competitive is larger than in the initial iteration. Hence, for **RQ3**, we conclude our toolchain can indeed help increase reliability in the DNN proxy being competitive, albeit only for a finite horizon. On the negative side, experiments for 20 iterations of retraining from spurious counterexamples take more than 90 min in both our case studies. This leads us to conclude that our toolchain does not yet scale as required for industrial-size case studies (**RQ2**).

6 Conclusion

Based on our theoretical developments to link the regret problem with the classical reachability problem, we proposed a CEGAR-based approach to realize the competitive analysis of MPCs via neural networks as proxies. We also presented an early proof-of-concept implementation of the approach. Now that we have a baseline, we strongly believe improvements in the form of algorithms and dedicated tools will allow us to improve our framework to the point where it scales for interesting classes of hybrid systems.

References

- Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: keeton, K., Roscoe, T. (eds.) 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016, Savannah, GA, USA, 2–4 November 2016, pp. 265–283. USENIX Association (2016). https://www.usenix.org/conference/ osdi16/technical-sessions/presentation/abadi
- Bak, S., Bogomolov, S., Johnson, T.T.: HYST: a source transformation and translation tool for hybrid automaton models. In: Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control, pp. 128–133 (2015)
- Bratko, I., Urbančič, T., Sammut, C.: Behavioural cloning: phenomena, results and problems. IFAC Proc. Vol. 28(21), 143–149 (1995)
- Chen, T., Chen, H.: Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems. IEEE Trans. Neural Netw. 6(4), 911–917 (1995)
- Chen, X., Sankaranarayanan, S.: Reachability analysis for cyber-physical systems: are we there yet? In: Deshmukh, J.V., Havelund, K., Perez, I. (eds.) NASA Formal Methods, NFM 2022. LNCS, vol. 13260. Springer, Cham (2022). https://doi.org/ 10.1007/978-3-031-06773-0 6
- 6. Clavière, A., Dutta, S., Sankaranarayanan, S.: Trajectory tracking control for robotic vehicles using counterexample guided training of neural networks. In: Benton, J., Lipovetzky, N., Onaindia, E., Smith, D.E., Srivastava, S. (eds.) Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling, ICAPS 2018, Berkeley, CA, USA, 11–15 July 2019, pp. 680–688. AAAI Press (2019). https://ojs.aaai.org/index.php/ICAPS/article/view/3555
- Fantoni, I., Lozano, R., Lozano, R.: Non-linear Control for Underactuated Mechanical Systems. Springer, London (2002). https://doi.org/10.1007/978-1-4471-0177-2
- Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_30
- Gillis, J., Vandewal, B., Pipeleers, G., Swevers, J.: Effortless modeling of optimal control problems with rockit. In: 39th Benelux Meeting on Systems and Control, Elspeet, The Netherlands, 10 March 2020–12 March 2020 (2020)
- Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What's decidable about hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998). https://doi.org/10.1006/ jcss.1998.1581
- Hertneck, M., Köhler, J., Trimpe, S., Allgöwer, F.: Learning an approximate model predictive controller with guarantees. IEEE Control. Syst. Lett. 2(3), 543–548 (2018). https://doi.org/10.1109/LCSYS.2018.2843682
- Hunter, P., Pérez, G.A., Raskin, J.: Reactive synthesis without regret. Acta Informatica 54(1), 3–39 (2017). https://doi.org/10.1007/s00236-016-0268-z
- Ivanov, R., Carpenter, T., Weimer, J., Alur, R., Pappas, G., Lee, I.: Verisig 2.0: verification of neural network controllers using Taylor model preconditioning. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 249–262. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81685-8 11
- Julian, K.D., Lopez, J., Brush, J.S., Owen, M.P., Kochenderfer, M.J.: Policy compression for aircraft collision avoidance systems. In: 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), pp. 1–10. IEEE (2016)
- 15. LaValle, S.M.: Planning Algorithms. Cambridge University Press (2006)

- Muvvala, K., Amorese, P., Lahijanian, M.: Let's collaborate: regret-based reactive synthesis for robotic manipulation. In: 2022 International Conference on Robotics and Automation, ICRA 2022, Philadelphia, PA, USA, 23–27 May 2022, pp. 4340– 4346. IEEE (2022). https://doi.org/10.1109/ICRA46639.2022.9812298
- 17. Ross, S., Bagnell, D.: Efficient reductions for imitation learning. In: Teh, Y.W., Titterington, D.M. (eds.) Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2010. JMLR Proceedings, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010, vol. 9, pp. 661–668. JMLR.org (2010). http://proceedings.mlr.press/v9/ross10a.html
- 18. Ross, S., Gordon, G.J., Bagnell, D.: A reduction of imitation learning and structured prediction to no-regret online learning. In: Gordon, G.J., Dunson, D.B., Dudík, M. (eds.) Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2011. JMLR Proceedings, Fort Lauderdale, USA, 11–13 April 2011, vol. 15, pp. 627–635. JMLR.org (2011). http://proceedings.mlr.press/v15/ross11a/ross11a.pdf