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Abstract. This paper presents a framework for the competitive analy-
sis of Model Predictive Controllers (MPC). Competitive analysis means
evaluating the relative performance of the MPC as compared to other
controllers. Concretely, we associate the MPC with a regret value which
quantifies the maximal difference between its cost and the cost of any
alternative controller from a given class. Then, the problem we tackle
is that of determining whether the regret value is at most some given
bound. Our contributions are both theoretical as well as practical: (1) We
reduce the regret problem for controllers modeled as hybrid automata to
the reachability problem for such automata. We propose a reachability-
based framework to solve the regret problem. Concretely, (2) we propose
a novel CEGAR-like algorithm to train a deep neural network (DNN) to
clone the behavior of the MPC. Then, (3) we leverage existing reacha-
bility analysis tools capable of handling hybrid automata with DNNs to
check bounds on the regret value of the controller.

Keywords: Competitive analysis · Hybrid automata

1 Introduction

An optimal control problem (OCP) deals with finding a function u(t), called a
control law that assigns values to control variables for every time step t ∈ R≥0.
The control law should minimize a given cost function J [x(·), u(·), t0, tf ] eval-
uated for a time interval (t0, tf ) and subject to the state-equation constraints
ẋ(t) = f [x(t), u(t), t]. Model predictive controllers (MPC) solve such a control
problem for a given f . This paper presents an approach for the competitive
analysis of MPC. Competitive analysis, in this context, means evaluating the
relative performance of the MPC as compared to other controllers. Referring
to the OCP, our approach assumes that a control law u(t) is given to us. Fur-
ther, we associate to u(t) a regret value, which quantifies the maximal difference
between its cost and the cost of any alternative control law from a given class C.
Formally, the regret of u(t) is: Reg(u) := supc∈C suptf∈R≥0

J [x(·), u(·), t0, tf ] −
J [x(·), c(·), t0, tf ]. If Reg(u) < r, then we say that the control law u(t) is r-
competitive.
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In this work, we first show that the r-competitivity problem for controllers
modeled as hybrid automata is interreducible with the reachability problem
for hybrid automata. It follows that the r-competitivity problem is undecid-
able. Fortunately, this also points to using approximate reachability analysis
tools to realize approximate competitive analysis. Based on the latter, we pro-
pose a counterexample-guided abstraction refinement (CEGAR) framework that
abstracts a given MPC using a deep neural network (DNN) trained to clone the
behavior of the MPC. This abstraction allows us to use reachability analysis
tools such as Verisig [13] to overapproximate the regret value of the abstracted
controller. As usual with CEGAR approaches, the refinement step is the main
challenge: If the regret is deemed too high (and Verisig finds a real example of
this), then this might be due to our abstraction of the controller as a DNN,
the overapproximation incurred by the reachability tool, or it might be a real
problem with the MPC. In our proposal, when we cannot match the high-regret
example to a behavior of the MPC, we use the output of the reachability analysis
tool to augment the dataset used for training the DNN.

As a final contribution, we report on a prototype implementation of our
CEGAR framework using Verisig. We have used this prototype to analyze MPC
for two well-known control problems. While the approach is promising, we con-
clude that further tooling support is required for the full automation of the
framework.

Related Work. Chen et al. 2022 [5] conducted a survey on recent advancements in
verifying cyber-physical systems and identified as understudied the verification
of control systems whose performance is measured using cost functions. Indeed,
we did not find many works on the verification of controllers with respect to the
cost functions used to obtain them from an OCP instance. Further, to the best
of our knowledge, there have been no previous works on the formal analysis of
regret in hybrid systems. A notable exception is the recent work of Muvvala
et al. [16] who propose regret minimization as a less pessimistic objective for
robots involved in collaborations (e.g., with humans), as opposed to a sole
emphasis on worst-case optimization. However, their regret analysis focuses on
a higher planning level, distinct from the hybrid-dynamics level of the system,
making it closer to the work of Hunter et al. [12] rather than the present one.

Behavioral cloning, also known as imitation learning, is a topic of increasing
interest within artificial intelligence (see, e.g. [3,17,18]). We do not claim to
have a new behavioral cloning algorithm. Rather, we have integrated a data
aggregation step into our CEGAR algorithm for the competitive analysis of
hybrid automata. Interestingly, contrary to previous uses of DNNs as proxies for
MPC [6,13], we have observed that a successful competitive analysis (i.e., the
tool says the controller is r-competitive for a small enough r) suggests one can
use the DNN instead of the MPC! Although this does not guarantee that the
MPC itself is r-competitive, the DNN demonstrates competitiveness. Moreover,
evaluating the DNN to compute the control law proves to be relatively efficient.
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2 Hybrid Automata and Competitive Analysis

A hybrid automaton (HA, for short) is an extension of a finite-state automaton
equipped with a finite set of real-valued variables. The values of the variables
change discretely along transitions and they do so continuously, over time while
staying in a state. Formally it is a tuple (Q, I, T,Σ,X, jump,flow , inv), where:

– Q is a finite set of states and I ⊆ Q is the subset of initial states,
– Σ is a finite alphabet,
– T ⊆ Q × Σ × Q is a set of transitions, and
– X is a finite set of real-valued variables. We write V ⊆ R

X to denote the set
of all possible valuations of X.

– jump : T → Op maps transitions to a set of guards and effects on the values
of the variables. That is, Op ⊆ V 2 and for a transition δ ∈ T , jump(δ) =
(guard , effect) implies that δ is “enabled” if the current valuation is guard
and effect is the valuation after the transition. Intuitively, jump denotes the
discrete changes in the variables along transitions. Usually, the guards and
effects are encoded as first-order predicates over the reals, e.g. jump(δ) =
(x > 2, x + 4) denotes the set {(v, v′) ∈ V 2 | v(x) > 2 and v′(x) = v(x) + 4}.

– flow : Q → F , with F ⊆ {f : R>0 → V }, maps each state q ∈ Q to a set F of
functions fq that give the continuous change in the valuation of the variables
while in state q. Usually, the functions fq are encoded as systems of first-order
differential equations, e.g. ẋ = 5 denotes functions1 f(t)(x) = 5t + c, where
c ∈ R>0 is the value of x at time t = 0.

– inv : Q → 2V maps each state q ∈ Q to an invariant that constrains the pos-
sible valuations of the variables in q. Similar to jump, inv is usually encoded
as first-order predicates over the reals.

Configurations and Runs. A configuration is a pair (q, v) where q ∈ Q and v ∈ V
is a valuation of the variables in X. A configuration (q, v) is valid if v ∈ inv(q).
Let (q, v) and (q′, v′) be two valid configurations. We say (q′, v′) is a discrete
successor of (q, v) if δ = (q, a, q′) ∈ T for some a ∈ Σ and (v, v′) ∈ jump(δ).
Similarly, (q′, v′) is a continuous successor of (q, v) if q = q′ and there exist
t0, t1 ∈ R>0 and fq ∈ flow(q) such that fq(t0) = v, fq(t1) = v′ and for all
t0 ≤ t ≤ t1, fq(t) ∈ inv(q).

A run ρ is a sequence of configurations (q0, v0)(q1, v1) . . . (qn, vn) such that
q0 ∈ I, v0 assigns 0 to all variables and, for all 0 ≤ i < n, (qi+1, vi+1) is a discrete
or continuous successor of (qi, vi). The Reach decision problem asks, for a given
hybrid automaton A and configuration (q, v), whether there is a run of A whose
last configuration is (q, v).

Parallel Composition. Let Ai = (Qi, Ii, Ti, Σi,Xi, jumpi,flow i, inv i) for i = 1, 2
be two HA. Then, A = (Q, I, T,Σ,X, jump,flow , inv) is the parallel composition
of A1 and A2, written A = A1 || A2, if and only if:

1 Note that if X contains more variables than just x, this function is not unique.
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– Q = Q1 × Q2 and I = I1 × I2,
– Σ = Σ1 ∪ Σ2 and X = X1 ∪ X2.
– The transition set T contains (〈q1, q2〉, σ, 〈q′

1, q
′
2〉) if and only if there are

i, j ∈ {1, 2} such that i 	= j and:
• either σ ∈ Σi \ Σj , (qi, σ, q′

i) ∈ Ti, and qj = q′
j ;

• or σ ∈ Σi ∩ Σj , (qi, σ, q′
i) ∈ Ti, and (qj , σ, q′

j) ∈ Tj .
– The jump function is such that, for δ = (〈q1, q2〉, σ, 〈q′

1, q
′
2〉), we have that:

• either σ ∈ Σi \ Σj and jump(δ) = jumpi(〈qi, σ, q′
i〉) for some i, j ∈ {1, 2}

with i 	= j,
• or σ ∈ Σi ∩ Σj and jump(t) = jump1(〈q1, σ, q′

1〉) ∩ jump2(〈q2, σ, q′
2〉).

– Finally, flow(〈q1, q2〉) = flow1(q1) ∩ flow2(q2), and
– inv(〈q1, q2〉) = inv1(q1) ∩ inv2(q2).

2.1 The Cost of Control

In this work, we use HA to model hybrid systems and controllers. In particular,
we henceforth assume any HA A = (Q, I, T,Σ,X, jump,flow , inv) modelling a
hybrid system has a designated cost variable J ∈ X. We make no such assump-
tion for HA used to model controllers. Observe that from the definition of parallel
composition, it follows that if A models a hybrid system, then B = A || C also
models a hybrid system—i.e. it has the cost variable J—for any HA C.

The following notation will be convenient: For a run ρ = (q0, v0) . . . (qn, vn)
we write Jρ to denote the value vn(J). Further, we write ρ ∈ A, where ρ is a
run of the hybrid automaton A. Now, the maximal and minimal cost of a HA A
respectively are J(A) := supρ∈A Jρ and, J(A) := infρ∈A Jρ.

2.2 Regret

Fix a hybrid-system HA A = (Q, I, T,Σ,X, jump,flow , inv). We define the
(worst-case) regret Reg(U) of a controller HA U as the maximal difference
between the (maximal) cost incurred by the parallel composition of A and U—
i.e. the controlled system—and the (minimal) cost incurred by an alternative
controller HA from a set C: Reg(U) := supU ′∈C(J(A || U) − J(A || U ′)). The
Regret problem asks, for given A, U , C, and r ∈ Q, whether Reg(U) ≥ r.

3 Reachability and Competitive Analysis

In this section, we establish that the reachability and regret problems are interre-
ducible. While this implies an exact algorithm for the competitive analysis of
hybrid automata does not exist, it suggests the use of approximation algorithms
for reachability as a means to realize an approximate analysis.

Theorem 1. Let C be the set of all possible controllers. Then, the Regret
problem reduces in polynomial time to the Reach problem.
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Fig. 1. Gadget for simulating any possible controller

Proof (of Theorem 1). Given a hybrid-system HA A, a controller U , a set of all
possible controllers C and a regret bound r ∈ Q, we will construct another HA
A′ = (Q′, I ′, T ′, Σ,X ′, jump′,flow ′, inv ′) and a target configuration (q′, v) of A′

such that, (q′, v) is reachable in A′ if and only if Reg(U) < r in A || U . Let us
write A = (Q, I, T,Σ,X, jump,flow , inv) and note that J ∈ X because A is a
hybrid-system HA. We extend the automaton A ||U with a gadget to obtain A′.
The idea is as follows: for every variable y ∈ Y of A || U , we add a copy of it
in the variable set X ′ of A′ that simulates any possible choice of value for that
variable by an alternative controller U ′. The variable J ′ ∈ X ′ calculates the cost
of that alternative controller. Formally, X ′ = Y ∪ {y′ | y ∈ Y }.

To simulate any possible valuation of the variables, we introduce the gadget
given in Fig. 1. For every variable x′

i such that xi is a variable in U , the gadget
contains two states q+x′

i
and q−

x′
i
. Then, flow ′(q+x′

i
) contains ẋ′

i = 1 and ẋ′
j = 0 for

all j 	= i. Intuitively, this state allows us to positively update the value of x′
i to

any arbitrary value. Similarly, flow ′(q−
x′
i
) contains ẋ′

i = −1 and ẋ′
j = 0, ∀j 	= i,

which allows it to negatively update the value of x′
i.

Now, we add a “sink” state qreach and make it reachable from all the other
states using transitions δ′

i ∈ T ′ such that jump′(δ′
i) contains guard of the form

J − J ′ ≥ r. Finally, from every state q′ ∈ Q′, we add the option to go into its
own copy of the gadget, set the values of the variables to any desired value and
come back to the same state.

Note that if (qreach,0) is reachable in A′, via a run ρ ∈ A′, then Jρ − J ′
ρ ≥ r.

As the gadget does not update the value of J and J ′, it is easy to see that
Reg(U) ≥ r. Now, if (qreach,0) is not reachable that means, Jρ − J ′

ρ < r for all
ρ ∈ A′. Now, as all possible controllers (in fact, all possible configurations of
variables from U) can be simulated in A′, it is easy to see that Reg(U) < r. 
�

Interestingly, the construction presented above does not preserve the prop-
erty of being initialized. Intuitively, an initialized hybrid automaton is one that
“resets” a variable x on transitions between states which have different flows for
x. Alas, we do not know whether an alternative proof exists which does preserve
the property of being initialized (and also being rectangular, a property which we
do not formally define here). Such a reduction would imply the regret problem
is decidable for rectangular and initialized hybrid automata.

We now proceed to stating and proving the converse reduction.

Theorem 2. The Reach problem reduces in polynomial time to the Regret
problem.
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qi A qTc = 0, J = 0
c ≥ 1, J = 1 v, J = 2

Fig. 2. Reduction from Reach to Regret

Proof (of Theorem 2). Given a HA A and a target configuration (q, v), we will
construct a HA A′ and a controller U such that Reg(U) ≥ 2 with respect to
A′ || U if and only if (q, v) is reachable in A. The reduction works for any set C
of controllers that contains at least one controller that sets c to 0 all the time.

First, we add two states to A′ so that Q′ = Q ∪ {qi, qT }. In A′, qi has a
self-loop that can be taken if the value of c is 0 and the effect is that J = 0 (see
Fig. 2). From qi, we can also transition to the initial states of A if c ≥ 1, and in
doing so, we set J to 1. Finally, from the target state q in A, we can go to the
new state qT if the target valuation v is reached, and that changes the valuation
of J to 2. The valuation of J does not change within A.

Note that the minimum cost incurred by a controller that constantly sets c
to 0 in A′ is 0, which is achieved by the run that loops on qi. Now, if (q,v) is
reachable in A via run ρ ∈ A, then the maximum cost incurred by a controller
that sets c to 1 occurs along a run qi · ρ · qT and is 2, making Reg(U) ≥ 2. On
the other hand, if (q,v) is not reachable in A, then the maximal value of J along
any such run is 1, resulting in Reg(U) < 2. Our constructed controller U is such
that it sets c to 1 all the time, and the above arguments give the desired result.

�

Since the reachability problem is known to be undecidable for hybrid
automata in general [10], it follows that our regret problem is also undecidable.

Corollary 1. The Regret problem is undecidable.

4 CEGAR-Based Competitive Analysis

We present our CEGAR approach to realize approximate competitive analysis.
To keep the discussion simple, we focus on continuous systems, specifically single-
state hybrid automata. Since our goal is to approximate the regret of MPCs, we
model controllers as hybrid automata that sample variable values at discrete-
time intervals and determine control variable values using a deep neural network
(DNN) trained to behave as the MPC. Concretely, our approach specializes the
reduction in the proof of Theorem 1: We will work with a hybrid automaton
D that abstracts the behavior of the controller using a DNN, and a hybrid
automaton N that abstracts the behaviors of all alternative controllers. The
overview of our framework is depicted in Fig. 3a.

4.1 Initial Abstraction and Analysis

Our proposed framework begins with the abstraction of the controller as a hybrid
automaton D and the alternative controllers as N . Each of these automata are
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(a) CEGAR-based approach
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(b) Competitive analysis toolchain

Fig. 3. Flowchart depictions of our approach and our toolchain implementing it;
We use ANSI/ISO standard flowchart symbols: the parallelogram blocks represent
inputs/outputs, and the rectangular blocks represent processes or tools

assumed to have a cost variable, say JD for D and JN for N . For a given
value r ∈ R, if we want to determine whether D is r-competitive then we add to
A = D||N a new cost variable J = JN −JD. As is argued in Theorem 1, D should
be r-competitive if and only if A can reach a configuration where the value of J
is larger than r. Hence, we can apply any reachability set (overapproximation)
tool to determine the feasibility of such a configuration.

4.2 Reachability Status

If the reachability tool finds that a configuration with J ≥ r is reachable in
A, we say it concludes A is unsafe. In that case, we will have to process the
reachability witness. Otherwise, A is safe, and we can stop and conclude that D is
r-competitive. Interestingly, D can now be used as an r-competitive replacement
of the original controller! It is important to highlight that behavior cloning does
not provide any guarantees regarding the relationship between the MPC and
the DNN within D. Consequently, even if we have evidence supporting the r-
competitiveness of D, we cannot infer the same for the MPC itself.

In the context of MPCs, this result is already quite useful. This is because
MPCs have a non-trivial latency and memory usage before choosing a next valu-
ation for the control variables (see, e.g. [11,14]). In our implementation described
in the following section, D takes the form of a DNN. As DNNs can be evaluated
rather efficiently, using the DNN instead of the original MPC is desirable.



148 S. Bellis et al.

4.3 Counterexample Analysis and Refinement

If A is deemed unsafe, we expect the reachability tool to output a counterex-
ample in the form of a run. There is one main reason why such a run could be
spurious, i.e. it is not a witness of the MPC not being r-competitive. Namely,
the abstractions D (representing the MPC) or N (representing alternative con-
trollers) might be too coarse. For the specific case of D, where a DNN is used to
model the MPC, we describe sufficient conditions to determine if the counterex-
ample is indeed spurious. If the counterexample is indeed deemed spurious, we
can refine our abstraction by incorporating new data obtained from the coun-
terexample and retraining the DNN. In general, though, refining D and N falls
into one of the tasks for which our framework does not rely on automation.

4.4 Human in the Loop

There are three points in the framework, where human intervention is needed.

Modelling and Specification. First, the task of obtaining initial abstractions D
and N of the controller and all alternative controllers, respectively, does require a
human in the loop. Indeed, crafting hybrid automata is not something we expect
from every control engineer. In our prototype described in the next section, we
mention partial support for obtaining D and N automatically when the MPC is
given in the language of a particular OCP and optimization library.

Reachability Analysis. Second, reachability being an undecidable problem, most
reachability analysis tools can not only output safe and unsafe as results. Addi-
tionally, they might output an “unknown” status. In this case, revisiting the
abstractions D and N , or even changing the options with which the tool is
being used may require human intervention. In fact, we see this as an additional
abstraction-refinement step which is considerably harder to automate since there
is an absence of a counterexample to work with.

Abstraction Refinement. Finally, our framework does not say what to do if the
counterexample being spurious is due to N being too coarse an approxima-
tion. This scenario can occur when N is purposefully modeled to discretize or
approximate certain behaviors of alternative controllers to facilitate reachability
analysis. However, for D, we offer automation support by proposing the retrain-
ing of our DNN in the implementation. It might actually be needed to change
the architecture of the DNN to obtain a better abstraction. This process can be
automated, as increasing the number of layers is often sufficient according to the
universal approximation theorem [4].

5 Implementation and Evaluation

We now present our implementation of the CEGAR-based competitive analysis
method presented in the previous section, along with two case studies used for
evaluation: the cart pendulum and an instance of motion planning.
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5.1 Competitive Analysis Toolchain

Figure 3b gives a visual depiction of the toolchain in the form of a flowchart.
Starting from the top, D.xml, N.xml are XML files encoding hybrid automata
D and N , respectively, in the SpaceEx modeling language [8]. The automaton D
represents the controller, which could be a model predictive controller (MPC),
and N represents a class of controllers that the MPC is compared against—
see also Sect. 4.1. We use the HyST [2] translation tool for hybrid automata
to generate the parallel composition D || N (encoded in DxN.xml, again in the
SpaceEx language). The composed automaton, along with the trained DNN and
the property to be verified, are fed as inputs to Verisig. Verisig [13] is a tool
that verifies the safety properties of closed-loop systems with neural network
components. The tool takes a hybrid automaton, a trained neural network, and
property specification files as inputs. It performs the reachability analysis and
provides safety verification result. We then parse the output of Verisig to deter-
mine whether D is competitive enough (parser.py). If this is not the case, we
realize a sound check to determine if the counterexample is spurious, in which
case we use it to extend our dataset and further train the DNN.

5.2 Initial Abstraction and Training

Our toolchain is finetuned to work well for hybrid systems modeled in a tool
called Rockit and MPCs obtained using the same tool. Rockit, which stands for
Rapid Optimal Control Kit, is a tool designed to facilitate the rapid prototyp-
ing of optimal control problems, including iterative learning, model predictive
control, system identification, and motion planning [9].

Our toolchain includes a utility that interfaces with the API of Rockit to
automatically generate the hybrid automata D and N from a model of a control
problem. While the use of Rockit is convenient, it is not required by our toolchain.

Based on a dataset (in our examples, we obtain it from Rockit), we train a
DNN using behavioral cloning : we try to learn the behavior of an expert (in our
case, the MPC) and replicate it. For this, we make use of the Dagger algorithm
[18], which, after an initial round of training on the dataset from Rockit, will
simulate traces using the DNN. The points that the neural network visits along
these traces are then given to the expert, and the output of the expert is recorded.
These new points and outputs are appended to the first dataset, and this new
dataset is used to train a second DNN. This iterative process is done multiple
times to make the DNN more robust. In all of our experiments, the TensorFlow
framework [1] was used for the creation and training of the DNN.

5.3 Reachability Status

The regret property, encoded as a reachability property as is done in the proof
of Theorem 1, is specified in the property file Property.yml, which also includes
the initial states of D || N . Verisig provides three possible results: “safe” if no
property violation is found, “unsafe” if there is a violation, and “unknown” if the
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property could not be verified, potentially due to a significant approximation
error. In the latter two cases, a counterexample file (CE file) is generated.

5.4 Counterexample Analysis and Retraining

If the result is “unsafe”, the next step is to compare the counterexample tra-
jectory against the dataset generated from the controller code. If a matching
trajectory is found, it indicates a real counterexample, meaning that this tra-
jectory could potentially occur in the actual controller, and no further action is
required. If a matching trajectory is not found, then it is a spurious counterex-
ample that requires either retraining the DNN or fix(es) in D||N . Our toolchain
automatically validates the counterexample by comparing the trajectories from
Verisig and the controller as implemented in Rockit. To do so, since Rockit uses
the floating-point representation of real numbers, we choose a decimal precision
of ε = 10−3 for the comparison. In the case of a spurious counterexample that
requires retraining the DNN, we update the existing dataset using Rockit to
obtain additional labeled data based on the trajectory from the CE file.

The CE file from Verisig represents state variable values using interval arith-
metic, while the controller dataset contains state variable values in R without
intervals. To accommodate this difference, we choose to append to the dataset
new entries: (a) the lower bounds of input intervals, (b) the upper bounds,
and (c) a range2 of intermediate input values within the intervals. For each of
these, we also include the corresponding controller outputs. The generation of
the updated dataset and the retraining of the DNN are performed automati-
cally by our toolchain. A DNN trained on the new dataset is then fed to Verisig
again along with DxN.xml and the Property.yml. This way, the CEGAR loop
is repeated until one of the following conditions is true: (a) the counterexample
is real, or (b) a maximum number of retraining iterations (determined by the
user) is reached.

5.5 Experiments

In the sequel, we use our tool to analyze two control problems that have been
implemented using the Rockit framework. The research questions we want to
answer with the forthcoming empirical study are the following.

RQ1 Can we have a fully automated tool to perform the competitive analysis?
RQ2 Is the toolchain scalable? Why or why not?
RQ3 Does the approach help to improve confidence in (finite-horizon) compet-

itivity of controllers?
RQ4 Does the approach help find bugs in controller design?

We now briefly introduce the two case studies, their dynamics, and how each
of them are modeled so that our toolchain can be used to analyze them.
2 Our toolchain splits each interval into n equally large segments and adds all points

in the resulting lattice. In our experiments, we use n = 4.
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Cart pendulum is a classic challenge in control theory and dynamics [7]. In it,
an inverted pendulum is mounted on a cart that can move horizontally via an
electronic servo system. The objective is to minimize a cost J = F 2+100∗pos2,
where F is the force applied to the cart and pos indicates the position of the
cart. The values of F and pos are constrained within the range of [−2, 2]. The
dynamics of the cart correspond to the physics of the system and depend on the
mass of the cart and the pendulum and the length of the pendulum.

While the proof of Theorem 1 provides a sound way to model all alternative
controllers in the form of N , the construction combines continuous dynamics and
non-determinism. Current hybrid automata tools do not handle non-trivial com-
binations of these two elements very well. Hence, we have opted to discretize the
choice of control values for alternative controllers. Every time the DNN is asked
for new control variable values in D, the automaton N non-deterministically
chooses new alternative values from a finite subset fixed by us a priori.

Motion planning involves computing a series of actions to move an object from
one point to another while satisfying specific constraints [15]. In our case study,
an MPC is used to plan the motion of an autonomous bicycle that is expected
to move along a curved path on a 2D plane using a predefined set of waypoints.
To prevent high-speed and skidding, the velocity (V ) and the turning rate (δ,
in radians) are constrained in the ranges 0 ≤ V ≤ 1 and −π/6 ≤ δ ≤ π/6.
The objective is to minimize the sum of squared estimate of errors between the
actual path taken by the bicycle and the reference path. Intuitively, the more
the controller deviates from the reference path, the higher its cost.

Like in the cart pendulum case study, we discretize the alternative control
variable valuations. A big difference is that the cost has both a Mayer term and
a Lagrangian that depend on the location of the bicycle and the waypoints in an
intricate way. In terms of modelling, this means that D and N have to “compute”
closest waypoints relative to the current position of the bicycle.

Discussion. Towards an answer for RQ1, we can say that while our toolchain3

somewhat automates our CEGAR, it still requires manual work (e.g. the initial
training and choice of DNN architecture). Moreover, in the described case stud-
ies, we did not observe an MPC DNN that is labeled as competitive. This may be
due to (over)approximations incurred by our framework and our use of Verisig.
Despite this, we can answer RQ4 positively as our toolchain allowed us to spot
a bug hidden in the Rockit MPC solution for the cart pendulum. We observed in
early experiments that the MPC was not competitive and short (run) examples
of this were quickly found by Verisig. We then found that the objective function
in Rockit was indeed not as intended by the developers.

The DNNs do show a trend towards copying the behavior of the MPC (see
Fig. 4) even though we retrain a new DNN from scratch after each (spurious)

3 All graphs and numbers can be reproduced using scripts from: https://doi.org/10.
5281/zenodo.8255730.

https://doi.org/10.5281/zenodo.8255730
https://doi.org/10.5281/zenodo.8255730
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Box Plot of Error Loss for DNNs 
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Fig. 4. Boxplots showing the training losses of all DNNs against all test sets

counterexample obtained via Verisig and we (purposefully) randomize the choice
of test and training set in each iteration. We do this to increase variability in
the set of behaviors and the counterexamples used to extend the dataset. In
the cart pendulum case study, we observe that in the iterations 2, 7, and 11,
the number of discrete time steps during which the corresponding DNN can act
while remaining competitive is larger than in the initial iteration. Hence, for
RQ3, we conclude our toolchain can indeed help increase reliability in the DNN
proxy being competitive, albeit only for a finite horizon. On the negative side,
experiments for 20 iterations of retraining from spurious counterexamples take
more than 90min in both our case studies. This leads us to conclude that our
toolchain does not yet scale as required for industrial-size case studies (RQ2).

6 Conclusion

Based on our theoretical developments to link the regret problem with the clas-
sical reachability problem, we proposed a CEGAR-based approach to realize the
competitive analysis of MPCs via neural networks as proxies. We also presented
an early proof-of-concept implementation of the approach. Now that we have a
baseline, we strongly believe improvements in the form of algorithms and dedi-
cated tools will allow us to improve our framework to the point where it scales
for interesting classes of hybrid systems.
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